

Intro to Graphs

Theoretical foundations
Fulvio Corno
Giuseppe Averta
Carlo Masone
Francesca Pistilli

Introduction to Graphs

DEFINITION: GRAPH

Definition: Graph

- A graph is a collection of points and lines connecting some (eventually empty) subset of them.
- The points of a graph are tipically known as graph vertices, but may also be called "nodes" or simply "points."
- The lines connecting the vertices of a graph are called graph edges, but may also be called "arcs" or "lines."

```
WolframMathW'rild
```


Big warning: Graph \neq Graph \neq Graph

- Graph (plot)
- (italiano: grafico)

- Graph (maths)
- (italiano: grafo)

Graph (chart)
(italiano: grafico)

\neq

History

- The study of graphs is known as graph theory, and was first systematically investigated by D. König in the 1930s
- Euler's proof about the walk across all seven bridges of Königsberg (1736), now known as the Königsberg bridge problem, is a famous precursor to graph theory.
- Indeed, the study of various sorts of paths in graphs has many applications in real-world problems.

Königsberg Bridge Problem

- Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a single trip without doubling back, with the additional requirement that the trip ends in the same place it began?

Figure 98. Geographic Map: The Königsberg Bridges.

Königsberg Bridge Problem

- Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a cinolo trin without doubling back, with th the trip ends juirement that uce it began?

Figure 98. Geographic Map: The Königsberg Bridges.

Types of graphs: edge cardinality

- Simple graph:
- At most one edge (i.e., either one edge or no edges) may connect any two vertices
- Multigraph:
- Multiple edges are allowed between vertices
- Loops:
- Edge between a vertex and itself
- Pseudograph:
- Multigraph with loops

simple graph

multigraph

pseudograph

Types of graphs: edge direction

- Undirected
- Oriented
- Edges have one direction (indicated by arrow)
- Directed
- Edges may have one or two directions
- Network
- Oriented graph with weighted edges

Types of graphs: labeling

- Labels
- None
- On Vertices
- On Edges
- Groups (=colors)
- Of Vertices
- no edge connects two identically colored vertices
- Of Edges
- adjacent edges must receive different colors
- Of both

unlabeled graph

edge-labeled graph vertex-labeled graph

vertex-colored graph

edge-colored graph

vertex- and edgecolored graph

Directed and Oriented graphs

- A Directed Graph (di-graph) G is a pair (V,E), where
-V is a (finite) set of vertices
- E is a (finite) set of edges, that identify a binary relationship over V
- $E \subseteq V \times V$

Example

Example

$$
V=\{1,2,3,4,5,6\}
$$

Example

Undirected graph

- An Undirected Graph is still represented as a touple $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, but the set E is made of non-ordered pairs of vertices

Example

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{2,5\},\{5,1\},\{6,3\}\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{2,5\},\{5,1\},\{6,3\}\}
\end{aligned}
$$

Introduction to Graphs

RELATED DEFINITIONS

Degree

- In an undirected graph,
- the degree of a vertex is the number of incident edges
- In a directed graph
- The in-degree is the number of incoming edges
- The out-degree is the number of departing edges
- The degree is the sum of in-degree and out-degree
- A vertex with degree 0 is isolated

Degree

Degree

Paths

- A path on a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, also called a trail, is a sequence $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right.$, $\left.v_{n}\right\}$ such that:
$-v_{1}, \ldots, v_{n}$ are vertices: $v_{i} \in V$
$-\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right)$ are graph edges: $\left(v_{i-1}, v_{i}\right) \in E$
- v_{i} are distinct (for "simple" paths).
- The length of a path is the number of edges ($n-1$)
- If there exist a path between v_{A} and v_{B} we say that v_{B} is reachable from V_{A}

Example

Path $=(1,2,5)$
Length = 2

Cycles

- A cycle is a path where $\mathrm{v}_{1}=\mathrm{v}_{\mathrm{n}}$
- A graph with no cycles is said acyclic

Example

Path $=(1,2,5,1)$

Length = 3

Reachability (Undirected)

- An undirected graph is connected if, for every couple of vertices, there is a path connecting them
- The connected sub-graphs of maximum size are called connected components
- A connected graph has exactly one connected component

Connected components

Reachability (Directed)

- A directed graph is strongly connected if, for every ordered pair of vertices ($\mathrm{v}, \mathrm{v}^{\prime}$), there exists at least one path connecting v to v^{\prime}

Example

The graph is strongly connected

Example

The graph is not strongly connected

Complete graph

- A graph is complete if, for every pair of vertices, there is an edge connecting them (they are adjacent)
- Symbol: K_{n}

Complete graph: edges

- In a complete graph with n vertices, the number of edges is

	Directed	Undirected
No self loops	$n(n-1)$	$\frac{n(n-1)}{2}$
With self loops	n^{2}	$\frac{n(n+1)}{2}$

Density

- The density of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the ratio of the number of edges to the total number of possible edges

$$
d=\frac{|E(G)|}{\left|E\left(K_{|V(G)|}\right)\right|}
$$

Example

Density $=0.5$

Existing: 3 edges

Total: 6 possible edges

Trees and Forests

- An undirected acyclic graph is called forest
- An undirected acyclic connected graph is called tree

Example

Example

Example

Rooted trees

- In a tree, a special node may be singled out
- This node is called the "root" of the tree
- Any node of a tree can be the root

Tree (implicit) ordering

- The root node of a tree induces an ordering of the nodes
- The root is the "ancestor" of all other nodes/vertices
- "children" are "away from the root"
- "parents" are "towards the root"
- The root is the only node without parents
- All other nodes have exactly one parent
- The furthermost (children-of-children-of-children...) nodes are "leaves"

Example

Example

Weighted graphs

- A weighted graph is a graph in which each branch (edge) is given a numerical weight.
- A weighted graph is therefore a special type of labeled graph in which the labels are numbers (which are usually taken to be positive).

License

- These slides are distributed under a Creative Commons license "Attribution-NonCommercialShareAlike 4.0 International (CC BY-NC-SA 4.0)"
- You are free to:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Under the following terms:
- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial - You may not use the material for commercial purposes.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
- https://creativecommons.org/licenses/by-nc-sa/4.0/

