

Intro to Graphs

Theoretical foundations

Fulvio Corno Giuseppe Averta Carlo Masone Francesca Pistilli

Tecniche di Programmazione - 2023/2024

Introduction to Graphs

DEFINITION: GRAPH

Definition: Graph

- A graph is a collection of points and lines connecting some (eventually empty) subset of them.
- The points of a graph are tipically known as graph vertices, but may also be called "nodes" or simply "points."
- The lines connecting the vertices of a graph are called **graph edges**, but may also be called "arcs" or "lines."

Big warning: Graph ≠ Graph ≠ Graph

- Graph (plot) •
- (italiano: grafico)

≠

- Graph (maths) ۲
- (italiano: grafo) ۲

nonsimple graph

simple graph with multiple edges

nonsimple graph with loops

Graph (chart) (italiano: grafico)

History

- The study of graphs is known as graph theory, and was first systematically investigated by D. König in the 1930s
- Euler's proof about the *walk across all seven bridges of Königsberg* (1736), now known as the *Königsberg bridge* problem, is a famous precursor to graph theory.
- Indeed, the study of various sorts of paths in graphs has many applications in real-world problems.

Königsberg Bridge Problem

 Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a single trip without doubling back, with the additional requirement that the trip ends in the same place it began?

FIGURE 98. Geographic Map: The Königsberg Bridges.

Today: Kaliningrad, Russia

Königsberg Bridge Problem

 Can the 7 bridges the of the city of Königsberg over the river Preger all be traversed in a single trip without doubling back, with th the trip ends

NO YOU

uirement that ice it began?

FIGURE 98. Geographic Map: The Königsberg Bridges.

Today: Kaliningrad, Russia

Types of graphs: edge cardinality

- Simple graph:
 - At most one edge (i.e., either one edge or no edges) may connect any two vertices
- Multigraph:
 - Multiple edges are allowed between vertices
- Loops:
 - Edge between a vertex and itself
- Pseudograph:
 - Multigraph with loops

simple graph

multigraph

Tecniche di Programmazione - 2023/2024

9

Types of graphs: edge direction

- Undirected
- Oriented
 - Edges have one direction (indicated by arrow)
- Directed
 - Edges may have **one or two** directions
- Network
 - Oriented graph with weighted edges

Types of graphs: labeling

- Labels
 - None
 - On Vertices
 - On Edges
- Groups (=colors)
 - Of Vertices
 - no edge connects two identically colored vertices
 - Of Edges
 - adjacent edges must receive different colors
 - Of both

Directed and Oriented graphs

- A Directed Graph (*di-graph*) G is a pair (V,E), where
 - V is a (finite) set of vertices
 - E is a (finite) set of *edges*, that identify a binary relationship over V
 - $E \subseteq V \times V$

Undirected graph

• An **Undirected** Graph is still represented as a touple G=(V,E), but the set E is made of **non-ordered pairs** of vertices

V = { 1, 2, 3, 4, 5, 6 }

 $\mathsf{E} = \{ \{1,2\}, \{2,5\}, \{5,1\}, \{6,3\} \}$

V = { 1, 2, 3, 4, 5, 6 }

$\mathsf{E} = \{ \{1,2\}, \{2,5\}, \{5,1\}, \{6,3\} \}$

Introduction to Graphs

RELATED DEFINITIONS

Degree

- In an *undirected* graph,
 - the **degree** of a vertex is the number of incident edges
- In a *directed* graph
 - The **in-degree** is the number of incoming edges
 - The **out-degree** is the number of departing edges
 - The degree is the sum of in-degree and out-degree
- A vertex with degree 0 is isolated

Degree

Degree

Paths

- A path on a graph G=(V,E), also called a trail, is a sequence {v₁, v₂, ..., v_n} such that:
 - v_1 , ..., v_n are vertices: $v_i \in V$
 - (v₁, v₂), (v₂, v₃), ..., (v_{n-1}, v_n) are graph edges: (v_{i-1}, v_i) \in E
 - v_i are distinct (for "simple" paths).
- The length of a path is the number of edges (n-1)
- If there exist a path between v_A and v_B we say that v_B is **reachable** from v_A

Path = (1, 2, 5) Length = 2

Cycles

- A cycle is a path where $v_1 = v_n$
- A graph with no cycles is said acyclic

Path = (1, 2, 5, 1) Length = 3

Reachability (Undirected)

- An undirected graph is **connected** if, for every couple of vertices, there is a path connecting them
- The connected sub-graphs of maximum size are called connected components
- A connected graph has exactly one connected component

Reachability (Directed)

• A directed graph is **strongly connected** if, for <u>every</u> ordered pair of vertices (v, v'), there exists at least one path connecting v to v'

The graph is **strongly connected**

The graph is **not** strongly connected

Complete graph

- A graph is complete if, for every pair of vertices, there is an edge ulletconnecting them (they are adjacent)
- Symbol: K_n

Complete graph: edges

• In a **complete** graph with *n* vertices, the number of **edges** is

	Directed	Undirected
No self loops	n(n - 1)	$\frac{n(n-1)}{2}$
With self loops	n^2	$\frac{n(n+1)}{2}$

Density

- The density of a graph G=(V,E) is the ratio of the number of edges to the total number of possible edges

$$d = \frac{|E(G)|}{|E(K_{|V(G)|})|}$$

Density = 0.5

Existing: 3 edges Total: 6 possible edges

Trees and Forests

- An undirected acyclic graph is called **forest**
- An undirected acyclic connected graph is called **tree**

Rooted trees

- In a tree, a special node may be singled out
- This node is called the "root" of the tree
- Any node of a tree can be the root

Tree (implicit) ordering

- The root node of a tree **induces an ordering** of the nodes
- The root is the "ancestor" of all other nodes/vertices
 - "children" are "away from the root"
 - "parents" are "towards the root"
- The root is the only node without parents
- All other nodes have exactly one parent
- The furthermost (children-of-children-of-children...) nodes are "leaves"

Weighted graphs

- A weighted graph is a graph in which each branch (edge) is given a numerical weight.
- A weighted graph is therefore a special type of labeled graph in which the labels are numbers (which are usually taken to be positive).

License

- These slides are distributed under a Creative Commons license "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
- You are free to:
 - Share copy and redistribute the material in any medium or format
 - Adapt remix, transform, and build upon the material
 - The licensor cannot revoke these freedoms as long as you follow the license terms.
- Under the following terms:
 - Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were</u> <u>made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 - NonCommercial You may not use the material for <u>commercial purposes</u>.
 - ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.
 - No additional restrictions You may not apply legal terms or <u>technological measures</u> that legally restrict others from doing anything the license permits.
- <u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>

