
Intro to Graphs
NetworkX

Fulvio Corno

Giuseppe Averta

Carlo Masone

Francesca Pistilli

Tecniche di Programmazione - 2023/2024

22

INTRODUCTION TO NETWORKX

33

Introduction to NetworkX - network analysis
• Vast amounts of network data are being generated and collected
• Sociology: web pages, mobile phones, social networks
• Technology: Internet routers, vehicular flows, power grids

How can we analyse these networks?

Python + NetworkX!

4

44

Introduction to NetworkX
“Python package for the creation, manipulation and
study of the structure, dynamics and functions of
complex networks.”

•Data structures for representing many types of data in
the form of graphs
•Nodes can be any (hashable) Python object, edges can

contain arbitrary data
• Flexibility ideal for representing networks found in

many different fields
• Easy to install on multiple platforms
•Online up-to-date documentation
• First public release in April 2005

55

Introduction to NetworkX - design requirements

•Tool to study the structure and dynamics of social, biological, and
infrastructure networks

•Ease-of-use and rapid development

•Open-source tool base that can easily grow in a multidisciplinary environment
with non-expert users and developers

•An easy interface to existing code bases written in C, C++, and FORTRAN

•To painlessly slurp in relatively large nonstandard data sets

66

Introduction to NetworkX - object model

NetworkX defines no custom node objects or edge objects
• node-centric view of network
• nodes can be any hashable object, while edges are tuples with optional edge

data (stored in dictionary)
• any Python object is allowed as edge data and it is assigned and stored in a

Python dictionary (default empty)

77

Introduction to NetworkX - quick example

• Search for the shortest path in a weighted and unweighted
network:

88

Introduction to NetworkX - drawing and plotting

• It is possible to draw small graphs within NetworkX and to export
network data and draw with other programs (i.e., GraphViz, matplotlib)

99

Introduction to NetworkX - official website

• https://networkx.org/

1010

GETTING STARTEDWITH PYTHON AND
NETWORKX

1111

Getting started – import NetworkX

• NetworkX supports many
different graph types, like:
– nx.Graph() – undirected
– nx.DiGraph() – directed
– nx.MultiGrap() – supports

multiple edges between nodes
– nx.MultiGrap() – directed

multigraph

• Also provide implementation of
notable graphs (like heawood)

1212

Getting started – build a graph

• Nodes could be (almost) anything
– Numbers, strings
– Objects
– Functions
– Flet containers

• Edges connect nodes (even
heterogeneous)

• Nodes and edges could have
attributes

1313

Getting started – Data Structure

• A graph is essentially a
“dictionary of dictionaries of
dictionaries”

• The keys are the nodes
• Indeed, g[n] yields a dictionary

where keys are all the nodes
connected with n (adjacency)
and values are the edges params
(like weight)

1414

Getting started – Data Structure
• g[u][v] yields the edge attributes
• n in g tests if node n is in g
• for n in g: iterates through the

graph
• for nbr in g[n]: iterates

through the neighbors of n
• Data struct for direct graphs is only

slightly more complex (two dics, one for
successors and one for predecessors)

• You can also use g.nodes()and
g.edges()to get corresponding data

• Edges can have arbitrary attributes

1515

Getting started – Directed and Multi

• Graphs can be directed,
therefore differentiating
neighbors in predecessors and
successors

• Two nodes can have more than
one edge

1616

Getting started - graph operators

Classic graph operations
• subgraph(G, nbunch) - induce subgraph of G on nodes in nbunch
• union(G1,G2) - graph union
• disjoint_union(G1,G2) - graph union assuming all nodes are different
• compose(G1,G2) - combine graphs identifying nodes common to both
• complement(G) - graph complement
• create_empty_copy(G) - return an empty copy of the same graph class
• convert_to_undirected(G) - return an undirected representation of G
• convert_to_directed(G) - return a directed representation of G

27

1717

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Tecniche di Programmazione - 2023/2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

