Paths in graphs

Shortest path and cycles

Fulvio Corno
Giuseppe Averta
Carlo Masone
Francesca Pistilli

s Ny
a’ﬁc‘_m“« Politecnico
A .:::::::.in’g di Torino

Philostrate

Tecniche di Programmazione - 2023/2024

Egeus
—
Mustardseed
Peaseblossom
————
Mot}
e

Searching for “optimal” paths between nodes

PATHS IN GRAPHS

Tecniche di Programmazione - 2023/2024

S h O rte St Pat h S What is the slswc;:js\;c sath between

Tecniche di Programmazione - 2023/2024

Summary

* Shortest Paths
— Definitions
— Floyd-Warshall algorithm
— Bellman-Ford-Moore algorithm
— Dijkstra algorithm
e Cycles
— Definitions
— Algorithms

Tecniche di Programmazione - 2023/2024

Definitions

* Graphs: Finding shortest paths

Tecniche di Programmazione - 2023/2024

Definition: weight of a path

* Consider a directed, weighted graph G=(V, E), with weight function w:
E>R

— This is the general case: undirected or un-weighted are automatically included

 The weight w(p) of a path p is the sum of the weights of the edges
composing the path

wp) =) wwv)

(wv)ep

Tecniche di Programmazione - 2023/2024

Definition: shortest path

* The shortest path between vertex u and vertex v is defined as the
minimum-weight path between u and v, if the path exists.

 The weight of the shortest path is represented as d(u,v)

* If vis not reachable from u, then (by definition) d(u,v)=00

Tecniche di Programmazione - 2023/2024

Finding shortest paths

e Single-source shortest path (SS-SP)

— Given u and v, find the shortest path between uand v
— Given u, find the shortest path between u and any other vertex

* All-pairs shortest path (AP-SP)

— Given a graph, find the shortest path between any pair of vertices

Tecniche di Programmazione - 2023/2024

What to find?

 Depending on the problem, you might want:
— The value of the shortest path weight
e Just a real number

— The actual path having such minimum weight
* For simple graphs, a sequence of vertices
* For multigraphs, a sequence of edges

Tecniche di Programmazione - 2023/2024

Example

What is the shortest path between
sandv?

Tecniche di Programmazione - 2023/2024

10

Representing shortest paths

e A data structure to represent all shortest paths from a single source u,
may include
— For each vertex v, the weight of the shortest path d(u,v) (double)

— For each vertex v, the “preceding” vertex p(v) that allows to reach v in the
shortest path (object)
* For multigraphs, we need the preceding edge

Tecniche di Programmazione - 2023/2024

11

Example

Tecniche di Programmazione - 2023/2024

T [

NULL
u S
X u
v X
y v

> IR

0
u 3
X 4
Y 3
Yy 10

12

Lemma

* The “previous” vertex in an intermediate node of a minimum path does
not depend on the final destination

e Example:
— Let p1 = shortest path between u and v1
— Let p2 = shortest path between u and v2
— Consider a vertex w € p1 N p2

— The value of m(w) may be chosen in a unique way and still guarantees that both
pl and p2 are shortest

13

Tecniche di Programmazione - 2023/2024

Shortest path graph

* Consider a source node u

 Compute all shortest paths from u

e Consider the relation Ep = { (v.preceding, v) }
* EpcE

e Vp={v e V:vreachable fromu }

* Gp =G(Vp, Ep) is a subgraph of G(V,E)

* Gp: the predecessor-subgraph

Tecniche di Programmazione - 2023/2024

14

Shortest path tree

e Gpisatree (due tothe Lemma) rooted in u
* In Gp, the (unique) paths starting from u are always shortest paths

* Gp is not unique, but all possible Gp are equivalent (same weight for
every shortest path)

Tecniche di Programmazione - 2023/2024

15

Example

Tecniche di Programmazione - 2023/2024

T [

NULL
u S
X u
v X
y v

sm

0
u 3
X 4
Y 3
Yy 10

16

Special case

* If Gis an un-weighted graph, then the shortest paths may be computed
even with a breadth-first visit

17

Tecniche di Programmazione - 2023/2024

Lemma

e Consider an ordered weighted graph G=(V,E), with weight function w:
E—>R.

e Let p=<vl, v2, ..., vk> a shortest path from vertex v1 to vertex vk.

* For alli,j such that 1<i<j<k, let pij=<vi, vi+1, ..., vj> be the sub-path of p,
from vertex vi to vertex vj.

* Therefore, pij is a shortest path from vi to vj.

A
' N\

0 0 0 ©

Y

18

Tecniche di Programmazione - 2023/2024

Corollary

Let p be a shortest path fromstov
Consider the vertex u, such that (u,v) is the last edge in the shortest path

We may decompose p (from s to v) into:
— A sub-path fromstou

— The final edge (u,v)
Therefore

d(s,v)=d(s,u)+w(u,v)

Tecniche di Programmazione - 2023/2024

19

Lemma

* If we arbitrarily chose the vertex u’, then for all edges (u’,v) €E we may
say that

e d(s,v)<d(s,u’)+w(u’,v)

Tecniche di Programmazione - 2023/2024

20

Relaxation

* Most of the shortest-path algorithms are based on the relaxation
technique:
— Vector d[u] represents d(s,u)

— Keeping track of an updated estimate d[u] of the shortest path towards each
node u

— Relaxing (i.e., updating) d[v] (and therefore the predecessor p[v]) whenever we
discover that node v is more conveniently reached by traversing edge (u,v)

Tecniche di Programmazione - 2023/2024

21

Initial state

* Initialize-Single-Source(G(V,E), s)
— for all verticesv € V
— do

e d[v]«—
e p[v]«—NIL

— d[s]«-0

Tecniche di Programmazione - 2023/2024

22

Relaxation

 We consider an edge (u,v) with weight w
e Relax(u, v, w)
— if d[v] > d[u]+w(u,V)

— then
e d[v] < d[u]+w(u,v)
* plv] «-u

Tecniche di Programmazione - 2023/2024

23

Example 1

Before:

Shortest known path to v
2 weights 9, does not
contain (u,v)

Relax(u,v,w)

After:

2 Shortest path to v
weights 7, the path
includes (u,v)

Tecniche di Programmazione - 2023/2024

Example 2

Before:

Shortest path to v
2 weights 6, does not
contain (u,v)

Relax(u,v,w)

After:
u No relaxation possible,
shortest path unchanged

Tecniche di Programmazione - 2023/2024

Lemma

e Consider an ordered weighted graph G=(V, E), with weight function w:
E—>R.

e Let(u,v) be an edgeinG.
» After relaxation of (u,v) we may write that:
e d[v]<d[u]+w(u,v)

Tecniche di Programmazione - 2023/2024

26

Lemma

e Consider an ordered weighted graph G=(V, E), with weight function w:
E—R and source vertex seV. Assume that G has no negative-weight
cycles reachable from s.

e Therefore

— After calling Initialize-Single-Source(G,s), the predecessor subgraph Gp is a rooted
tree, with s as the root.

— Any relaxation we may apply to the graph does not invalidate this property.

27

Tecniche di Programmazione - 2023/2024

Lemma

* Given the previous definitions.
* Apply any possible sequence of relaxation operations

 Therefore, for each vertex v
— d[v] = d(s,v)

e Additionally, if d[v] = d(s,v), then the value of d[v] will not change
anymore due to relaxation operations.

Tecniche di Programmazione - 2023/2024

28

Shortest path algorithms

e Various algorithms

* Differ according to one-source or all-sources requirement
* Adopt repeated relaxation operations

* Vary in the order of relaxation operations they perform

 May be applicable (or not) to graph with negative edges (but no negative
cycles)

29

Tecniche di Programmazione - 2023/2024

Implementations

* https://networkx.org/documentation/stable/reference/algorithms/short
est paths.html

30

Tecniche di Programmazione - 2023/2024

https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html
https://networkx.org/documentation/stable/reference/algorithms/shortest_paths.html

Graphs: Finding shortest paths

FLOYD-WARSHALL ALGORITHM

31

Floyd-Warshall algorithm

3 # Weighted _
FLovD-WARSHALL z‘tgf Directed [EEE[E] Overflow
Best Average | Worst e Graph
[2]5]e .
o?) ov?) o) 3] Dynamic FH 20 Array
1] Programming

Initialize dist[][] matrix with existing edges

 Computes the all-source shortest path (AP-SP) 23

 dist[i][j] is an n-by-n matrix that contains the
length of a shortest path from vi to vj.
 if dist[u][v] is e, there is no path from utov
* pred[s][j] is used to reconstruct an actual shortest ’ %
path: stores the predecessor vertex for reaching vj |= 355?15va"5¥3e3[v1 Y
starting from source vs

o R

This is the final result since
processing vertex 4 has no impact

32

Tecniche di Programmazione - 2023/2024

Floyd-Warshall: initialization

def FLOYD_WARSHALL(V, E, w):

Initialize dist[][] matrix with existing edges

2 3 4

for u in V:
for v in V:
distullv] = =
pred[u] [v] = None
dist[u][u]l = 0

oo

OIN|—
8
8
TN

3
3
8

for n in neighborhood(u):
dist[ul [n] = w(u,n)
pred[ul[n] = u

_

H W N = O
3
o|w

00

Q

3
NI | D

o!

0| 0| e 0
dict[u][v]
33

Tecniche di Programmazione - 2023/2024

Floyd-Warshall: initialization

def FLOYD_WARSHALL(V, E, w):

for u in V:
for v in V:
dist[ullv] = =
pred[u] [vl = None
dist[u][u]l = 0

for n in neighborhood(u):
dist[ul [n] = w(u,n)
pred[ul[n] = u

= anys
for u in V:
for v in V:

newDist = dist([u] [t] + dist[t][v]
if (newDist < dist[u][v])
dist[u] [v]l] = newLen

pred[u] [vl = pred[t] [v]

return dist, pred

H W NN = O

glo|n|=

S|e|8|8 ||

glo|lw|8|N

8

IS
8

N|jo|»n|[8 (8 |w
Ol |=(8|H|>

dist[u][v]

This is the final result since
processing vertex 4 has no impact

For each vertex t € V, reduce
paths between each pair of (u,v)
vertices through t when possible

012 3 4
2 D

09 ()

H

oN

8
8

—

w[s]s[o
)
o|lw

3

3

3|8
\J‘CD\tn

H W N = O

olNn| =
N

8w

S |H|H

3

oo

8

bl IR

A W N = O
Q
3
o|w

[ee}
—
(=)
N|I©o|wn
—
N

8
)

C

3

o | O
=y ~
D o

O |IN(=—=

8

oSlwlun|N

8
)

<

8

H W NN = O
|8
o|8
w

N O | ged
—

N

Tecniche di Programmazione - 2023/2024

34

Complexity

* The Floyd-Warshall is basically executing 3 nested loops, each iterating
over all vertices in the graph

 Complexity: O(V3)

* https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-
warshall/index en.html

Tecniche di Programmazione - 2023/2024

37

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html

Implementation in NetworkX

floyd_warshall

floyd_warshall(G, weight='weight"') [source]
Find all-pairs shortest path lengths using Floyd’s algorithm.

Parameters: . .

G : NetworkX graph

weight: string, optional (default= ‘weight’)

import networkx as

Edge data key corresponding to the edge weight.

Returns: G
distance : dict G.add v e - rom . N (
A dictionary, keyed by source and target, of shortest paths distances between ') (
r - ’
nodes.

r 2)1)
fw = nx.f!. W 11(G, weight="weight")
floyd_warshall_predecessor_and_distance results = {a: dlCt (b) for a ’ b in fW L ii;ﬁ S
floyd_warshall_numpy print (results)

’

e See also

all_pairs_shortest_path
all_pairs_shortest_path_length

Notes

Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with
negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative
cycles. It has running time O(n?) with running space of O(n?).

Tecniche di Programmazione - 2023/2024

Graphs: Finding shortest paths

BELLMAN-FORD-MOORE ALGORITHM

39

Bellman-Ford-Moore Algorithm

e Solution to the single-source shortest path (SS-SP) problem in graph
theory

* Based on relaxation (for every vertex, relax all possible edges)

* Does not work in presence of negative cycles
— but it is able to detect the problem

« O(V-E)

Tecniche di Programmazione - 2023/2024

40

Bellman-Ford-Moore Algorithm

def Bellman_Ford_Moore(V, E, s, w):

dist[s] = 0
for v in V={s}:

dist[v] = =
pred[v] = None

-1 in range(1, len(V)):
for (u, v) in E:
if distlv] > dist[u] + w(u, v):
dlv] = dlu] + w(u, v)
pred(v] = u

~ (u, v) in E:
if dist[v] > dist[u] + w(u, V):

PANIC!

return dist, pred

Tecniche di Programmazione - 2023/2024

https://algorithms.di

screte.ma.tum.de/gr

aph-algorithms/spp-

bellman-

ford/index en.html

41

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

Implementation in NetworkX

all_pairs_bellman_ford_path

all_pairs_bellman_ford_path (G, weight='weight') [source]

Compute shortest paths between all nodes in a weighted graph.

Parameters:
G : NetworkX graph

weight : string or function (default="weight”)
If this is a string, then edge weights will be accessed via the edge attribute with this
key (that is, the weight of the edge joining |u to v | will be G.edges[u, vl
[weight]). If no such edge attribute exists, the weight of the edge is assumed to be
one.
If this is a function, the weight of an edge is the value returned by the function. The
function must accept exactly three positional arguments: the two endpoints of an
edge and the dictionary of edge attributes for that edge. The function must return a
number.

Returns:
paths : iterator
(source, dictionary) iterator with dictionary keyed by target and shortest path as the
key value.

e See also

floyd warshall, all_pairs_dijkstra_path

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted

Tecniche di Programmazione - 2023/2024

Graphs: Finding shortest paths

DIJKSTRA’S ALGORITHM

Tecniche di Programmazione - 2023/2024

43

Dijkstra’s algorithm

e Solution to the single-source shortest path (SS-SP) problem in graph
theory

* Works on both directed and undirected graphs

* All edges must have nonnegative weights

— the algorithm would miserably fail
* Greedy
. ... but guarantees the optimum!

Tecniche di Programmazione - 2023/2024

44

Dijkstra’s algorithm

def Dijkstra(Vv, E, s, w):

dist[s] = @

Q=1I]

for v in V-{s}:
dist[v] = =
prev([v] = None
Q.append(v)

while Q 1s not empty:
u=aq in Q with min distl[ql
Q.remove(u)

for v in neighborhood(u) still in Q:
newDist = dist([u] + w(u,v)
if newDist < dist([v]:
dist[v] = newDist
prev[v] = k

return dist, pred

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-dijkstra/index en.html

Tecniche di Programmazione - 2023/2024

45

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-dijkstra/index_en.html

Dijkstra Animated Example

Initialize:

0-4 B CDE =~ YC
Q0

0 o© o o o

46

Dijkstra Animated Example

47

Dijkstra Animated Example

;. o

b i

O:

8

8 8

48

Dijkstra Animated Example

49

Dijkstra Animated Example

0: | B
B o0 oo
10 3
7 11 5

S- {4, C}

Tecniche di Programmazione - 2023/2024

50

Dijkstra Animated Example

S: {4, C E}

Tecniche di Programmazione - 2023/2024

51

Dijkstra Animated Example

O: 1 B
00 oo o
10 B
7 11 B
7 il S {A, C, E}

Tecniche di Programmazione - 2023/2024

52

Dijkstra Animated Example

0.

e

= 93 o 8

11
11 o {A, C, E, B }

Tecniche di Programmazione - 2023/2024

53

Dijkstra Animated Example

0:

W 8

=N 3o 8

9 S: {4 C E B)

Tecniche di Programmazione - 2023/2024

54

Dijkstra Animated Example

0:
M o0 o o©
10 Bl oo
7 11
7

S: {4 CEBD)

Tecniche di Programmazione - 2023/2024

55

Dijkstra efficiency

The simplest implementation is:

O(E +V?%)

But it can be implemented more efficently:

O(E +V-logV)

4

Floyd—Warshall: O(V3)

Bellman-Ford-Moore : O(V-E)

|

Tecniche di Programma

-2023/2024

56

Implementation in NetworkX

dijkstra_path

dijkstra_path(G, source, target, weight='weight') [source]

Returns the shortest weighted path from source to target in G.

Uses Dijkstra's Method to compute the shortest weighted path between two nodes in a graph.

Parameters:
G : NetworkX graph

source : node

Starting node

target : node
Ending node

weight : string or function
If this is a string, then edge weights will be accessed via the edge attribute with this
key (that is, the weight of the edge joining u to v will be G.edges[u, v]
[weight]). If no such edge attribute exists, the weight of the edge is assumed to be
one.
If this is a function, the weight of an edge is the value returned by the function. The
function must accept exactly three positional arguments: the two endpoints of an
edge and the dictionary of edge attributes for that edge. The function must return a

number or None to indicate a hidden edge.

Returns:
path : list

List of nodes in a shortest path.

Raises:
NodeNotFound

If source isnotin G .

NetworkXNoPath

If no path exists between source and target.

e See also

bidirectional_dijkstra
bellman_ford_path

single_source_dijkstra

Edge weight attributes must be numerical. Distances are calculated as sums of weighted
edges traversed.

The weight function can be used to hide edges by returning None. So \weight = lambda u, v,
d: 1 if d['color']=="red" else None will find the shortest red path.

The weight function can be used to include node weights.

>>> def func(u, v, d):
node_u_wt = G.nodes[u].get("node_weight", 1)
node_v_wt = G.nodes[v].get("node_weight", 1)
edge_wt = d.get("weight", 1)
return node_u_wt / 2 + node_v_wt / 2 + edge_wt

In this example we take the average of start and end node weights of an edge and add it to the

weight of the edge.

57

Tecniche di Programmazione - 2023/2024

Example

Shortest path: 0-12-11-7
Shortest path length: 8

Tecniche di Programmazione - 202

import networkx as nx
import matplotlib.pyplot as plt
import random

G = nx.directed_havel_hakimi_graph([3] * 15,
[3] * 15,
create_using=None)

for v in G.edges():
print(G[v([@]][vI1]])
GIv[0l][v[1]]['weight'] = random.randrange(1,10)
print(GLv[e]l][vI1]])
print("

print(G.nodes())
print(G.edges())

pos=nx.spring_layout(G)

nx.draw_networkx(G,pos)

labels = nx.get_edge_attributes(G, 'weight"')
nx.draw_networkx_edge_labels(G, pos,edge_labels=1abels)

print(nx.dijkstra_path(G, @, 7))
print(nx.dijkstra_path_length(G, @, 7))

optpath = nx.dijkstra_path(G, @, 7)

optedges = []

for i in range(®, len(optpath)-1):
optedges.append([optpath[i], optpath[i+1]])

nx.draw_networkx_edges(G, pos, optedges,
edge_color="red")

plt.savefig("plot") 58
plt.show()

Shortest Paths wrap-up

Algorithm Efficiency

Floyd-Warshall oV?3) No negative cycles
Bellman-Ford SS oV -E) No negative cycles
Repeated Bellman-Ford AP o(V?-E) No negative cycles
Dijkstra SS O(E +V-logV) No negative edges
Repeated Dijkstra AP OV-E+V2-logV) No negative edges
Breadth-First visit SS OV +E) Unweighted graph

Tecniche di Programmazione - 2023/2024

Graphs: Cycles

CYCLES: DEFINITIONS

Tecniche di Programmazione - 2023/2024

60

Cycle

* A cycle of a graph, sometimes also called a circuit, is a subset of the edge
set of that forms a path such that the first node of the path corresponds
to the last.

61

Tecniche di Programmazione - 2023/2024

Hamiltonian cycle

* A cycle that uses each graph vertex of a graph exactly once is called a
Hamiltonian cycle.

Tecniche di Programmazione - 2023/2024

62

Hamiltonian path

A Hamiltonian path, also called a Hamilton path, is a path between two
vertices of a graph that visits each vertex exactly once.
— N.B. does not need to return to the starting point

Tecniche di Programmazione - 2023/2024

63

Eulerian Path and Cycle

 An Eulerian path, also called an Euler chain, Euler trail, Euler walk, or
"Eulerian" version of any of these variants, is a walk on the graph edges
which uses each edge in the original graph exactly once.

 An Eulerian cycle, also called an Eulerian circuit, Euler circuit, Eulerian

tour, or Euler tour, is a trail which starts and ends at the same graph
vertex.

* An Eulerian Graph is a graph which admits an Eulerian cycle.

* Euler showed (without proof) that a connected simple graph is
Eulerian iff it has no graph vertices of odd degree (i.e., all vertices are of
even degree).

64

Tecniche di Programmazione - 2023/2024

https://mathworld.wolfram.com/ConnectedGraph.html
https://mathworld.wolfram.com/SimpleGraph.html
https://mathworld.wolfram.com/Iff.html
https://mathworld.wolfram.com/GraphVertex.html
https://mathworld.wolfram.com/OddNumber.html
https://mathworld.wolfram.com/Degree.html

Theorem

* A connected graph has an Eulerian cycle if and only if it all vertices have
even degree.

* A connected graph has an Eulerian path if and only if it has at most two
graph vertices of odd degree.

@gg

— ...easy to check!

a

B

TFicure 98. Geographic Map:
The Konigsberg Bridges.

Konigsberg Bridges

65

Tecniche di Programmazione - 2023/2024

Weighted vs. unweighted

e Classical versions defined on unweighted graphs

 Unweighted:

— Does such a cycle exist?

— If yes, find at least one
e Optionally, find all of them

* Weighted:
— Does such a cycle exist?
« Often, the graph is complete ©

— If yes, find at least one
— If yes, find the best one (with minimum weight)

Tecniche di Programmazione - 2023/2024

66

Graphs: Cycles

ALGORITHMS

Tecniche di Programmazione - 2023/2024

67

Eulerian cycles: Hierholzer's algorithm (1)

* Let us assume that G is an Eulerian graph.

* Choose any starting vertex v, and follow a trail of edges from that vertex
until returning to v.

— It is not possible to get stuck at any vertex other than v, because the even degree
of all vertices ensures that, when the trail enters another vertex w there must be
an unused edge leaving w.

— The tour formed in this way is a closed tour, although it may not cover all the
vertices and edges of the initial graph.

68

Tecniche di Programmazione - 2023/2024

Eulerian cycles: Hierholzer's algorithm (2)

* As long as there exists a vertex v that belongs to the current tour but
that has adjacent edges not part of the tour, start another trail from v,
following unused edges until returning to v, and join the tour formed in
this way to the previous tour.

69

Tecniche di Programmazione - 2023/2024

Hierholzer's algorithm Pseudocode

Given an Eulerian Graph G, find an Eulerian circuit of G.

Identify a circuit in G and call it R;. Mark the edges of R, as visited. Let i=1
If R. contains all edges of G, break.

If R, does not contains all edges of G, then let v,be a node of R; that is incident with
an unmarked edge e,

4. Build a new circuit Q;, starting from node v, and using edge e, . Mark edges of Q; as
visited.

5. Ryq will result as the conjunction in v, of R. and Q
Increment i by 1 and go to step 2

70

Tecniche di Programmazione - 2023/2024

Example

R,,eg hdch,je
O, dbaced

Tecniche di Programmazione - 2023/2024

71

J

e, ih dba Ri:eghdbacedchje
' e :

O;:hfeih

Tecniche di Programmazione - 2023/2024

72

Fulerian Circuits in NetworkX

Eulerian

Eulerian circuits and graphs.

is_eulerian (G) Returns True if and only if G is Eulerian.

eulerian_circuit (G[, source, keys]) Returns an iterator over the edges of an Eulerian circuit
in G.

eulerize |(G) Transforms a graph into an Eulerian graph.
is_semieulerian (G) Return True iff G is semi-Eulerian.

has_eulerian_path (G[, source]) Return True iff 6 has an Eulerian path.

eulerian_path (G[, source, keys]) Return an iterator over the edges of an Eulerian path in
G.

Tecniche di Programmazione - 2023/2024

73

Hamiltonian Cycles

 There are theorems to identify whether a graph is Hamiltonian (i.e.,
whether it contains at least one Hamiltonian Cycle)

* Finding such a cycle has no known efficient solution, in the general case
 Example: the Traveling Salesman Problem (TSP)

74

Tecniche di Programmazione - 2023/2024

The Traveling Salesman Problem (TSP)

e Given a collection of cities, find the shortest route to visit them exactly
once.

* Most notorious NP-complete problem
e Typically is solved through backtracking:

— The best tour found to date is saved

— The search backtracks unless the partial solution is cheaper than the cost of the
best tour

Tecniche di Programmazione - 2023/2024

75

Hamiltonian Cycles in NetworkX

hamiltonian_path

hamiltonian_path (G) [source]

Returns a Hamiltonian path in the given tournament graph.

Each tournament has a Hamiltonian path. If furthermore, the tournament is strongly connected,
then the returned Hamiltonian path is a Hamiltonian cycle (by joining the endpoints of the
path).

Parameters:
G : NetworkX graph

A directed graph representing a tournament.

Returns:
path : list

A list of nodes which form a Hamiltonian path in |G .

Notes

This is a recursive implementation with an asymptotic running time of O(nz), ignoring

multiplicative polylogarithmic factors, where n is the number of nodes in the graph.

Examples

>>> G = nx.DiGraph([(0, 1), (e, 2), (e, 3), (1, 2), (1, 3), (2, 3)])
>>> nx.is_tournament(G)

True

>>> nx.tournament.hamiltonian_path(G)

[0, 1, 2, 3]

Tecniche di Programmazione - 2023/2024

Alternatives on graphs

Traveling Salesman

Travelling Salesman Problem (TSP)

Implementation of approximate algorithms for solving and approximating the TSP problem. . g . 5
B e = - PP - P christofides |(G[, weight, tree]) Approximate a solution of the traveling

Categories of algorithms which are implemented: salesman problem

Christofides (provides a 3/2-approximation of TSP) traveling_salesman_problem (G[, weight, ...]) Find the shortest path in (6 connecting
Greedy

specified nodes
Simulated Annealing (SA)

Threshold Accepting (TA) greedy_tsp (G[, weight, source]) Return a low cost cycle starting at | source | and

Asadpour Asymmetric Traveling Salesman Algorithm its cost.

The Travelling Salesman Problem tries to find, given the weight (distance) between all points where simulated_annealing tsp (G, init_cycle[, ...]) Returns an approximate solution to the
— a0] — {000

a salesman has to visit, the route so that: :
traveling salesman problem.

¢ The total distance (cost) which the salesman travels is minimized.
threshold accepting_tsp (G, init_cycle[, ...]) Returns an approximate solution to the

¢ The salesman returns to the starting point.

* Note that for a complete graph, the salesman visits each point once. traveling salesman problem.

The function travelling_salesman_problem allows for incomplete graphs by finding all-pairs asadpour_atsp |(G[, weight, seed, source]) Returns an approximate solution to the
shortest paths, effectively converting the problem to a complete graph problem. It calls one of the traveling salesman problem.
approximate methods on that problem and then converts the result back to the original graph using

the previously found shortest paths.

TSP is an NP-hard problem in combinatorial optimization, important in operations research and
theoretical computer science.

http://en.wikipedia.org/wiki/Travelling_salesman_problem

Tecniche di Programmazione - 2023/2024

Christofides” algorithm

christofides

christofides (G, weight='weight', tree=None) [source]

Approximate a solution of the traveling salesman problem

Compute a 3/2-approximation of the traveling salesman problem in a complete undirected
graph using Christofides [1] algorithm.

Parameters:
G : Graph
G should be a complete weighted undirected graph. The distance between all pairs
of nodes should be included.

weight : string, optional (default="weight”)
Edge data key corresponding to the edge weight. If any edge does not have this
attribute the weight is set to 1.

tree : NetworkX graph or None (default: None)

A minimum spanning tree of G. Or, if None, the minimum spanning tree is computed

using | networkx.minimum_spanning_tree()

Returns:
list
List of nodes in |G| along a cycle with a 3/2-approximation of the minimal Hamiltonian
cycle.

Tecniche di Programmazione - 2023/2024

78

[@oSle)

* These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
* You are free to:
— Share — copy and redistribute the material in any medium or format
— Adapt — remix, transform, and build upon the material
— The licensor cannot revoke these freedoms as long as you follow the license terms.
e Under the following terms:

— Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

— NonCommercial — You may not use the material for commercial purposes.

— ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under th
same license as the original.

— No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

 https://creativecommons.org/licenses/by-nc-sa/4.0/

License

OA® ®6

79

Tecniche di Programmazione - 2023/2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

