
Python and Databases
Access, DAO Pattern, ORM, Identity Map, Pooling

Fulvio Corno

Giuseppe Averta

Carlo Masone

Francesca Pistilli

Tecniche di Programmazione - 2023/2024

https://realpython.com/python-mysql/
https://realpython.com/python-sql-libraries/
https://realpython.com/python-pyqt-database/

https://realpython.com/python-mysql/
https://realpython.com/python-sql-libraries/
https://realpython.com/python-pyqt-database/

22

Outline

• Tools
– MariaDB, MySQL, DBeaver

• Database access in Python
– mysql-connector, Connection, Cursor, Statements

• Pattern DAO
• Object-Relational Mapping (ORM)
• Connection Pooling

Tecniche di Programmazione - 2023/2024

33

Goal

• Enable Python applications to access data stored in Relational Databases
– Query existing data
– Modify existing data
– Insert new data

• The data can be used by
– The algorithms running in the application
– The user, through the user interface

Tecniche di Programmazione - 2023/2024

44

TOOLS

Tecniche di Programmazione - 2023/2024

http://dilbert.com/strips/comic/1995-11-17/

55

Tools: MariaDB / MySQL

https://mariadb.org/

Tecniche di Programmazione - 2023/2024

https://www.mysql.com/

Database Management Systems (DBMS) are software systems used to
store, retrieve, and run queries on data, as well as administer the data.
A DBMS allows end-users/applications to interact with a database.

https://mariadb.org/
https://www.mysql.com/

66

Tools: DBeaver

Graphical frontend to work with a
database:
• Data Editor
• SQL Editor
• Task management
• Database maintenance tools

Tecniche di Programmazione - 2023/2024

https://dbeaver.io/

https://dbeaver.io/

77

DATABASE ACCESS IN PYTHON
mySQL-connector

Tecniche di Programmazione - 2023/2024

88

Resources

• Official mySQL-connector guide: https://dev.mysql.com/doc/connector-
python/en/

• Useful tutorials: https://www.geeksforgeeks.org/how-to-connect-
python-with-sql-database/

Tecniche di Programmazione - 2023/2024

https://www.geeksforgeeks.org/how-to-connect-python-with-sql-database/
https://www.geeksforgeeks.org/how-to-connect-python-with-sql-database/
https://www.geeksforgeeks.org/how-to-connect-python-with-sql-database/
https://www.geeksforgeeks.org/how-to-connect-python-with-sql-database/

99

Connecting and interacting with DBMS

• Database management system (DBMS): software system that
enables users to define, create, maintain and control access to the
database

• Different flavours of SQL-based DBMSs: MySQL, MariaDB,
PostgreSQL, SQLite, and SQL Server, …

– All of these databases are compliant with the SQL standards but with varying
degrees of compliance

Tecniche di Programmazione - 2023/2024

https://troels.arvin.dk/db/rdbms/

https://www.mysql.com/
https://mariadb.org/
https://www.postgresql.org/
https://www.sqlite.org/index.html
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://docs.oracle.com/cd/B28359_01/server.111/b28286/intro002.htm
https://troels.arvin.dk/db/rdbms/

1010

Interacting with DBMS in Python

Tecniche di Programmazione - 2023/2024

Python

Python SQL
library

DBMS

Database

Many different Python libraries
(connectors) that implement
modules for interacting with
different DBMS

• mysql-connector-python
• SQLite
• Psycopg2
• mariadb-connector-python
• …

https://realpython.com/python-sql-libraries

https://realpython.com/python-sql-libraries/

1111

Python Database API Specification

https://peps.python.org/pep-0249/

Tecniche di Programmazione - 2023/2024

The Python Database API (DB-API) defines a standard interface for
Python database access modules, e.g., using Connection and Cursor
objects.
Goals:
• Encourage similarity between the Python modules that are used to

access databases.
• Achieve a consistency leading to more easily understood modules.
• Code that is generally more portable across databases.

https://peps.python.org/pep-0249/

1212

mysql-connector-python

Tecniche di Programmazione - 2023/2024

• It is a self-contained Python driver for communicating with MySQL servers, using an API
that is compliant with the Python Database API Specification v2.0 (PEP 249)

• Documentation: https://dev.mysql.com/doc/connector-python/en/

• Install via pip (pip install mysql-connector-python) , or directly in PyCharm in the
virtual environment of the project

http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/connector-python/en/

1313

Connection
• The first step in interfacing a Python application with a MySQL/MariaDB server is to

establish a connection
• mysql-connector provides a connect() function that is used to establish

connections to the MySQL server

Tecniche di Programmazione - 2023/2024

https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html

https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html

1414

Connection

It is a MySQLConnection object.

The MySQLConnection class is used to open
and manage a connection to a MySQL server.
It also used to send commands and SQL
statements and read the results.

Tecniche di Programmazione - 2023/2024

The arguments of the connect() identify
the database we want to connect, and the
credentials of the user

There are many more arguments…
https://dev.mysql.com/doc/connector-
python/en/connector-python-connectargs.html

https://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html
https://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

1515

Connection

Tecniche di Programmazione - 2023/2024

The close() function closes the connection, when we don’t need it anymore.
• The connection to the database is a resource!!!

1616

Connection
• The connect() function may raise exceptions (for example if the connection fails

due to wrong authentication)

Tecniche di Programmazione - 2023/2024

We can handle these exceptions
with a try – except – else - finally
clause:
• 1. Try to connect
• 2. Handle exceptions
• 3. If there was no exception,

close the connection
This may also be rewritten using a
with statement
https://docs.python.org/3/reference/com
pound_stmts.html#with

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html

1717

Connection
• Writing the configuration of the database and authentication

information in the code is not ideal, especially if the file is worked
collaboratively (git)

• It is possible to use a separate config file.

Tecniche di Programmazione - 2023/2024

Example config file

1818

Using the connection

• When connected to the DBMS and we have the MySQLConnection
object, we can interact in different ways
– Create tables
– Create/Update/Delete data
– Read data

• This is achieved through the execution of SQL statements, using a
handle structure known as cursor

Tecniche di Programmazione - 2023/2024

Tables creation: https://dev.mysql.com/doc/connector-python/en/connector-python-example-ddl.html

https://dev.mysql.com/doc/connector-python/en/connector-python-example-ddl.html

1919

Cursor

Tecniche di Programmazione - 2023/2024

2020

Cursor

Tecniche di Programmazione - 2023/2024

• The MySQLCursor class instantiates objects that can execute operations such
as SQL statements. A cursor is created from a MySQLConnection using the
cursor() function

• There are several cursor classes that inherit from the MySQLCursor, and can
be created by passing an appropriate argument to the cursor() function

Cursor documentation: https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursor.html

MySQLCursorDict cursor returns rows as
dictionaries

MySQLCursorNamedTuple cursor returns rows
as named tuples

MySQLCursorPrepared cursor is used for
executing prepared statements

https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursor.html

2121

Statement execution

• A cursor object has a method execute() that allows to execute a SQL
statement, expressed as a string

Tecniche di Programmazione - 2023/2024

2222

Parametric queries

• SQL queries may depend on user input data
• Example: find item whose code is specified by the user
• Method 1: string interpolation (with concatenation or as an f-string)
– query =
"SELECT * FROM items
WHERE code='"+user_code+"'" ;

Tecniche di Programmazione - 2023/2024

2323

Parametric queries

• SQL queries may depend on user input data
• Example: find item whose code is specified by the user
• Method 1: string interpolation (with concatenation or as an f-string)
– query =
"SELECT * FROM items
WHERE code='"+user_code+”’” ;

• Method 2: use parametric Statements
– Always preferable
– Always

Tecniche di Programmazione - 2023/2024

2424

What’s wrong with method 1?

• query =
"SELECT * FROM items
WHERE code='"+user_code+"'" ;

Tecniche di Programmazione - 2023/2024

For example, string written by the user in a
textbox in the GUI

• This may cause security problems

2525

SQL injection

• SQL injection – syntax errors or privilege escalation
• Example
– username : '; delete * from users ; --

• Must detect or escape all dangerous characters!
– Will never be perfect…

• Never trust user-entered data. Never. Not once. Really.

Tecniche di Programmazione - 2023/2024

select * from users where
username=''; delete * from
users ; -- '

2626

SQL injection attempt J

Tecniche di Programmazione - 2023/2024

2727

SQL injection attempt J

Tecniche di Programmazione - 2023/2024

http://xkcd.com/327/

http://xkcd.com/327/

2828

Parametric statements
• Separate statement creation from statement execution
– At creation time: define SQL syntax (template), with placeholders for variable

quantities (parameters)
– At execution time: define actual quantities for placeholders (parameter values),

and run the statement

• Parametric statements can be re-run many times
• Parameter values are automatically
– Converted according to their primitive type
– Escaped, if they contain dangerous characters
– Handle non-character data (serialization)

Tecniche di Programmazione - 2023/2024

2929

Insert/Update/Delete data
• Using the cursor, we can execute INSERT, UPDATE and DELETE statements

Tecniche di Programmazione - 2023/2024

• 1. Define the statement (using the Python
multi-line block “”” “””). Values may be
written in the statement, or left unspecified
as %s (because it may depend on user data)

• 2. Execute the statement (setting all the
unspecified values)

• 3. Commit the changes to the database

• 4. Close the cursor

3030

Insert/Update/Delete data
• Using the cursor, we can execute INSERT, UPDATE and DELETE statements

Tecniche di Programmazione - 2023/2024

3131

Query Data
• We can use a cursor also to execute a statement that queries data from

the database

Tecniche di Programmazione - 2023/2024

• Executing the query fetches results from
the database

• We can then use cursor as an iterator over
the results set

• There is no commit, because we are not
modifying the database

3232

Query Data: process the results
• After executing the statement, we can use the cursor as a iterator to go

through the results

Tecniche di Programmazione - 2023/2024

• Data is available a row at a time
• Rows are read as tuple, in the

standard cursor. They can be
read as dictionary or as named
tuple using the corresponding
cursor

3333

Query Data
• We can use a cursor also to execute a statement that queries data from

the database

Tecniche di Programmazione - 2023/2024

• If we use a MySQLCursorDict the results
set is read as a dictionary, so we can iterate
through the data accordingly

3434

Query Data: fetchone, fetchmany, fetchall
• The cursor object also has other methods to fetch the results retrived by

exceuing a query statement

– fetchone() retrieves the next row of a query result set and returns a single
sequence, or None if no more rows are available

– fetchmany(N) fetches the next set of N rows of a query result and returns a
list of tuples (or dictionaries or named tuples, if using other specialized
cursors)

– fetchall() fetches all (or all remaining) rows of a query result set and
returns a list of tuples (or dictionaries or named tuples, if using other
specialized cursors). If no more rows are available, it returns an empty list.

Tecniche di Programmazione - 2023/2024

3535

Query Data: fetchone, fetchmany, fetchall

Tecniche di Programmazione - 2023/2024

Example
• 0. cursor.execute(query)
• 1. cursor.fetchone()
• 2. cursor.fetchall()

Cursor before the first row

Cursor at the first row

Cursor after the last row

3636

Query Data: fetchone, fetchmany, fetchall

Tecniche di Programmazione - 2023/2024

Example

3737

Query Data: fetchone, fetchmany, fetchall

Tecniche di Programmazione - 2023/2024

Warning: when
executing a
query to read
the data, we are
expected to
handle all the
results.

3838

Query Data: fetchone, fetchmany, fetchall

Tecniche di Programmazione - 2023/2024

3939

Type conversion MySQL -> Python

• By default, MySQL types in result sets are converted automatically to
Python types. For example, a DATETIME column value becomes a
datetime.datetime object. To disable conversion, one can use a
cursor with the option cursor(raw=True)

• You can check the read type using the Python type() function

Tecniche di Programmazione - 2023/2024

4040

DATA ACCESS OBJECT (DAO)

Tecniche di Programmazione - 2023/2024

4141

Problems

• Database code involves a lot of «specific» knowledge
– Connection parameters
– SQL commands
– The structure of the database

• Bad practice to «mix» this low-level information with main application
code
– Reduces portability and maintainability
– Creates more complex code
– Breaks the «one-class one-task» assumption

• What is a better code organization?

Tecniche di Programmazione - 2023/2024

4242

Goals

• Encapsulate DataBase access into separate classes and modules, distinct
from application ones
– All other classes should be shielded from DB details

• DataBase access should be independent from application needs
– Potentially reusable in different parts of the application

• Develop a reusable development pattern that can be easily applied to
different situations

Tecniche di Programmazione - 2023/2024

4343

Pattern DAO

• DAO (Data Access Object) is a pattern that acts as an abstraction
between the database and the main application.

• It takes care of adding, modifying, retrieving, and deleting the data and
you do not need to know how it does this, that’s what an abstraction is.

• DAO is implemented in a separate file. Then, these methods are called in
the main application.

Tecniche di Programmazione - 2023/2024

4444

Pattern DAO

Tecniche di Programmazione - 2023/2024

Image source https://www.analyticsvidhya.com/blog/2023/02/what-are-data-access-object-and-data-transfer-object-in-
python/

https://www.analyticsvidhya.com/blog/2023/02/what-are-data-access-object-and-data-transfer-object-in-python/
https://www.analyticsvidhya.com/blog/2023/02/what-are-data-access-object-and-data-transfer-object-in-python/

4545

Data Access Object (DAO) – 1/2

• «Client» classes:
– Application code that needs to access the database
– Ignorant of database details (connection, queries, schema, ...)

• «DAO» classes:
– Encapsulate all database access code (mysql-connector-python)
– The only ones that will ever contact the database
– Ignorant of the goal of the Client

Tecniche di Programmazione - 2023/2024

4646

Data Access Object (DAO) – 2/2

• Low-level database classes, to handle the connection (MySQLConnection,
Pooled connection,…)
– Used by DAO (only!) but invisible to Client

• «Transfer Object» (TO) or «Data Transfer Object» (DTO) classes
– Contain data sent from Client to Dao and/or returned by DAO to Client
– Represent the data model, as seen by the application
– May use @dataclass
– Ignorant of DAO, ignorant of database, ignorant of Client
– The DTO acts as a data store that moves the data from one layer to another
– Should implement the __eq__() and __hash__() functions using the primary key
– May implement __str__() and other dunder methods as needed

Tecniche di Programmazione - 2023/2024

4747

DAO Diagram

Tecniche di Programmazione - 2023/2024

4848

DAO: application example

Tecniche di Programmazione - 2023/2024

For example a @dataclass

The DAO then implements the
methods to interface with the
student table in the database

4949

DAO design criteria

• DAO has no state
– No instance variables (except Connection - maybe)

• DAO manages one ‘kind’ of data
– Uses a small number of DTO classes and interacts with a small number of DB

tables
– If you need more, create many DAO classes

• DAO offers CRUD methods
– Create, Read, Update, Delete

• DAO may offer search methods
– Returning collections of DTO

Tecniche di Programmazione - 2023/2024

5050

DAO: example

Tecniche di Programmazione - 2023/2024

5151

OBJECT-RELATIONAL MAPPING

Tecniche di Programmazione - 2023/2024

5252

Object Relational Mapping (ORM)

• Object Relational Mapping is programming pattern that enables for
moving data between objects and a database while keeping them
independent of each other.

– In the database, entities are represented as rows of a table, and they can be
related to entries of other tables

– In the Python application, we represent entities as objects, and we need to
represent their relationships

Tecniche di Programmazione - 2023/2024

5353

Object Relational Mapping (ORM)

Tecniche di Programmazione - 2023/2024

Class Pet

Database,
table Pets

DTO Pet

5454

Mapping Tables to Objects

Tecniche di Programmazione - 2023/2024

• Goal: guidelines for creating a set of (data)classes to represent
information stored in a relational database: will be used as DTO

• Goal: guidelines for designing the set of methods for DAO objects

5555

Tables à data class ORM rules

Tecniche di Programmazione - 2023/2024

1. Create one dataclass per each main database entity
– Except tables used to store n:m relationships!

2. Class names should match table names
– In the singular form (Utente; User)

3. The Class should have one attribute for each column in the table, with
matching names
– According to Python naming conventions (NUMERO_DATI -> numero_dati)
– Match the data type
– Except columns used as foreign keys

5656

Tables à data class ORM rules

Tecniche di Programmazione - 2023/2024

4. Add the getter (@property) and setter (@attr.setter) methods for
the attributes, if needed. The setter method canno be specified if the
dataclass uses the frozen=True parameter.

5. Define __eq__() and __hash__() using the exact set of fields that
compose the primary key of the table

5757

Relationships, Foreign keys à Class

Tecniche di Programmazione - 2023/2024

• Define additional attributes in the DTO classes, for every relationship
that we want to easily navigate in our application

– Not necessarily *all* relationships!

5858

Cardinality-1 relationship

Tecniche di Programmazione - 2023/2024

• A relationship with cardinality 1 maps to an attribute referring to the
corresponding Python object
– not the PK value

• Use singular nouns.

5959

1:1 relationship

Tecniche di Programmazione - 2023/2024

STUDENTE

matricola (PK)
fk_persona

@dataclass
class Studente:

persona: Persona
codice_fiscale: str

PERSONA

codice_fiscale (PK)
fk_studente

@dataclass
class Persone:

studente: Studente
matricola: int

6060

Cardinality-N relationship

Tecniche di Programmazione - 2023/2024

• A relationship with cardinality N maps to an attribute containing a
collection
– The elements of the collection (for example list or set) are corresponding Python

objects (not PK values).
– Use plural nouns.

• The class should have methods for reading (get, …) and modifying (add,
…) to the collection

6161

1:N relationship

Tecniche di Programmazione - 2023/2024

STUDENTE

matricola (PK)
fk_citta_residenza

@dataclass
class Studente:

cittaResidenza: Citta

CITTA

cod_citta (PK)
nome_citta

@dataclass
class Citta:

studentiResidenti: list[Studente]

6262

1:N relationship

Tecniche di Programmazione - 2023/2024

STUDENTE

matricola (PK)
fk_citta_residenza

@dataclass
class Studente:

cittaResidenza: Citta

CITTA

cod_citta (PK)
nome_citta

@dataclass
class Citta:

studentiResidenti: list[Studente]

In SQL, there is no «explicit»
Citta->Studente foreign key.

The same FK is used to
navigate the relationship in

both directions.

In Python, both directions (if
needed) must be represented

explicitly.

6363

N:M relationship

Tecniche di Programmazione - 2023/2024

ARTICLE AUTHORSHIP CREATOR
--------------- --------------- ---------------
id_article (PK) id_article (FK,PK*) id_creator (PK)
Article data… id_creator (FK,PK*) Creator data…
 id_authorship (PK#)

@dataclass @dataclass
class Article: class Creator:
 creators: set[Creator] articles: set[Article]

6464

N:M relationship

Tecniche di Programmazione - 2023/2024

ARTICLE AUTHORSHIP CREATOR
--------------- --------------- ---------------
id_article (PK) id_article (FK,PK*) id_creator (PK)
Article data… id_creator (FK,PK*) Creator data…
 id_authorship (PK#)

@dataclass @dataclass
class Article: class Creator:
 creators: set[Creator] articles: set[Article]

In SQL, there is an extra table
just for the N:M relationship .

The PK may be an extra
field (#) or a combination

of the FKs (*)

The extra table is not
represented.

The PK is not used.

6565

Storing Keys vs Objects

id_citta_residenza: int citta_residenza: Citta

Tecniche di Programmazione - 2023/2024

• Store the value of the foreign key
• Easy to retrieve
• Must call a read method from the

DAO to get all the data
• Tends to perform more queries

• Store a fully initialized object,
corresponding to the matching
foreign row

• Harder to retrieve (must use a Join
or multiple/nested queries)

• Gets all data at the same time
(eager loading)

• All data is readily available
• Maybe such data will not be needed

6666

Storing Keys vs Objects (3rd way)

citta_residenza : Citta = field(default_factory=lambda: []) // lazy
citta_residenza : Citta = None // lazy

Tecniche di Programmazione - 2023/2024

• Store a partially initialized object, with only the ‘id’ field set
– Or even a null field

• Easy to retrieve
• Must ask the DAO to have the real data (lazy loading), but only once
• Loading details may be hidden behind getters

6767

Identity problem

Tecniche di Programmazione - 2023/2024

• It may happen that a single object gets retrieved many times, in different
queries
– Especially in the case of N:M relationships

articles = dao.list_articles()
for article in articles:

authors= dao.get_creators_for(article)
article.creators(authors)

…
authors = []
for row in cursor:

authors.append(Creator(…))
…
return authors

6868

Identity problem

Tecniche di Programmazione - 2023/2024

• It may happen that a single object gets retrieved many times, in different
queries
– Especially in the case of N:M relationships

articles = dao.list_articles()
for article in articles:

authors= dao.get_creators_for(article)
article.creators(authors)

…
authors = []
for row in cursor:

authors.append(Creator(…))
…
return authors

If the same Creator is author of many articles, a we would repeatedly query the database
to create new objects (with identical information

6969

Identity problem

Tecniche di Programmazione - 2023/2024

• It may happen that a single object gets retrieved many times, in different
queries
– Especially in the case of N:M relationships

• Different «identical» objects will be created
– They can be used interchangeably
– They waste memory space
– They can’t be compared for identity (== or !=)
– You can’t store additional information in those objects

• Solution: avoid creating pseudo-identical objects
– Store all retrieved objects in a map (for example, using a dictionary)
– Don’t create an object if it’s already in the map

7070

Identity Map pattern

Tecniche di Programmazione - 2023/2024

• Ensures that each object gets loaded only once, by keeping every loaded
object in a map

• Looks up objects using the map when referring to them.

7171

Creating an Identity Map

Tecniche di Programmazione - 2023/2024

• One identity_map per database table

• The identity_map stores a dictionary

– Key = field(s) of the Table that constitute the Primary Key

– Value = Object representing the table

7272

Using the Identity Map

Tecniche di Programmazione - 2023/2024

• Create and store the identity_map in the Model
• Pass a reference to the identity_map to the DAO methods
• In the DAO, when loading an object from the database, first

check the map
– If there is a corresponding object, return it (and don’t create a new

one)
– If there is no corresponding object, create a new object and put it

into the map, for future reference

• If possible, check the map before doing the query

7373

ORM Libraries

• There are many Object Relational Mappers in Python, that are libraries
that implement the ORM logic and usually much more (they integrate
the connector, implement DAO)

Tecniche di Programmazione - 2023/2024

7474

CONNECTION POOLING

Tecniche di Programmazione - 2023/2024

7575

Connection pooling

• Opening and closing DB connection is expensive
– Requires setting up TCP/IP connection, checking authorization, …
– After just 1-2 queries, the connection is dropped and all partial results are lost in

the DBMS

• Connection pool
– A set of “already open” database connections
– DAO methods “lend” a connection for a short period, running queries
– The connection is then returned to the pool (not closed!) and is ready for the next

DAO needing it

Tecniche di Programmazione - 2023/2024

7676

Connection Pool conceptual model

Tecniche di Programmazione - 2023/2024

7777

Connection pooling with mysql-connector
• The mysql.connector.pooling module implements pooling.
• A pool opens a number of connections and handles thread safety when

providing connections to requesters.
• A connection pool has several properties:

• size : indicates the number of connections available in the pool. It is configurable at
pool creation time and cannot be resized thereafter.

• name: can be retrieved from the connection pool or connections obtained from it.

• It is possible to have multiple connection pools. This enables applications
to support pools of connections to different MySQL servers, for example.

• For each connection request, the pool provides the next available
connection. No round-robin or other scheduling algorithm is used. If a
pool is exhausted, a PoolError is raised.

Tecniche di Programmazione - 2023/2024

7878

Creating a pool

Tecniche di Programmazione - 2023/2024

The cnxpool object is an instantiation of the class PooledMySQLConnection .
Differently from MySQLConnection objects, PooledMySQLConnection objects
cannot be used directly as connections, but we must lend a connection from them

7979

Lending a connection

Tecniche di Programmazione - 2023/2024

• We can ask a connection from the
pool using the
get_connection() method
• Warning: if there are no

connections available this
method raises a PoolError
exception

cnx is an instantiation of the class PooledMySQLConnection . It is similar to a
MySQLConnection object, but with one notable difference:
• The close() method return the connection to the pool, does not terminate it!

8080

Benchmarks

Tecniche di Programmazione - 2023/2024

Iterations 1 10 100 1000 10000

Pooling 0.012s 0.081s 0.717s 8.81s 92.2s

Non-Pooling 0.031s 0.039s 0.081s 0.351s 2.42s

8181

References

• mysql-connector-python
– Coding examples https://dev.mysql.com/doc/connector-python/en/connector-

python-examples.html
– Tutorial https://dev.mysql.com/doc/connector-python/en/connector-python-

tutorials.html
– Connection arguments and option files https://dev.mysql.com/doc/connector-

python/en/connector-python-connecting.html
– API reference https://dev.mysql.com/doc/connector-python/en/connector-

python-reference.html

Tecniche di Programmazione - 2023/2024

https://dev.mysql.com/doc/connector-python/en/connector-python-examples.html
https://dev.mysql.com/doc/connector-python/en/connector-python-examples.html
https://dev.mysql.com/doc/connector-python/en/connector-python-tutorials.html
https://dev.mysql.com/doc/connector-python/en/connector-python-tutorials.html
https://dev.mysql.com/doc/connector-python/en/connector-python-connecting.html
https://dev.mysql.com/doc/connector-python/en/connector-python-connecting.html
https://dev.mysql.com/doc/connector-python/en/connector-python-reference.html
https://dev.mysql.com/doc/connector-python/en/connector-python-reference.html

8282

References

Tecniche di Programmazione - 2023/2024

• Comparison of different SQL implementations
– http://troels.arvin.dk/db/rdbms/
– essential!

• DAO pattern
– https://en.wikipedia.org/wiki/Data_access_object
– https://www.analyticsvidhya.com/blog/2023/02/what-are-data-access-object-

and-data-transfer-object-in-python/

http://troels.arvin.dk/db/rdbms/
https://en.wikipedia.org/wiki/Data_access_object
https://www.analyticsvidhya.com/blog/2023/02/what-are-data-access-object-and-data-transfer-object-in-python/
https://www.analyticsvidhya.com/blog/2023/02/what-are-data-access-object-and-data-transfer-object-in-python/

8383

References

Tecniche di Programmazione - 2023/2024

• ORM patterns and Identity Map
– Patterns of Enterprise Application Architecture, By Martin Fowler, David Rice,

Matthew Foemmel, Edward Hieatt, Robert Mee, Randy Stafford, Addison Wesley,
2002, ISBN 0-321-12742-0

– https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping#:~:text=Obj
ect%E2%80%93relational%20mapping%20(ORM%2C,from%20within%20the%20p
rogramming%20language.

https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

8484

References
• Connection pooling

– https://dev.mysql.com/doc/connector-python/en/connector-python-
connection-pooling.html

Tecniche di Programmazione - 2023/2024

https://dev.mysql.com/doc/connector-python/en/connector-python-connection-pooling.html
https://dev.mysql.com/doc/connector-python/en/connector-python-connection-pooling.html

8585

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Tecniche di Programmazione - 2023/2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

