
Object Oriented
Programming in Python
Transitioning from Java to Python

Fulvio Corno

Giuseppe Averta

Carlo Masone

Francesca Pistilli

Tecniche di Programmazione - 2023/2024

https://realpython.com/oop-in-python-vs-java/
https://realpython.com/python3-object-oriented-
programming/

https://realpython.com/oop-in-python-vs-java/
https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python3-object-oriented-programming/

22

Known OOP features (in Java)

• Classes

• Objects

• Properties

• Methods

• Visibility

• Constructor

• Encapsulation

• Inheritance

• Polymorphism

• Annotations

• Overloading

Tecniche di Programmazione - 2023/2024

We assume these concepts are known in
Java, let’s see how they map in Python

33

Classes and Objects

class Car:
def __init__(self, color, model, year):

self.color = color
self.model = model
self.year = year

def age(self):
return 2024 - self.year

my_car = Car("white", "Panda", 2010)

print(my_car.age())

Tecniche di Programmazione - 2023/2024

44

Visual representation

Tecniche di Programmazione - 2023/2024

55

Classes and Objects

class Car:
def __init__(self, color, model, year):

self.color = color
self.model = model
self.year = year

def age(self):
return 2024 - self.year

my_car = Car("white", "Panda", 2010)

print(my_car.age())

Tecniche di Programmazione - 2023/2024

Class definition

Method definition

Instance “new”

Method call

66

Classes and Objects

class Car:
def __init__(self, color, model, year):

self.color = color
self.model = model
self.year = year

def age(self):
return 2024 - self.year

my_car = Car("white", "Panda", 2010)

print(my_car.age())

Tecniche di Programmazione - 2023/2024

Constructor

“new”

Constructor parameters

Constructor arguments

77

Classes and Objects

class Car:
def __init__(self, color, model, year):

self.color = color
self.model = model
self.year = year

def age(self):
return 2024 - self.year

my_car = Car("white", "Panda", 2010)

print(my_car.age())

Tecniche di Programmazione - 2023/2024

Properties

88

Classes and Objects

class Car:
def __init__(self, color, model, year):

self.color = color
self.model = model
self.year = year

def age(self):
return 2024 - self.year

my_car = Car("white", "Panda", 2010)

print(my_car.age())

Tecniche di Programmazione - 2023/2024

“this”

“this”

“this”

“this”

99

What is ‘self’?

• Each method receives, as a first argument, the reference to the object
instance

• By convention, this parameter is called self

• Upon calling a method, self is initialized with the reference to the
instance

• my_car.age() sets self to my_car

– Equivalent to Car.age(my_car) (static method call with explicit self)

• Using self is always mandatory (unlike this, that can be omitted)

Tecniche di Programmazione - 2023/2024

1010

Class attributes vs. instance attributes

Tecniche di Programmazione - 2023/2024

class Car:

wheels = 4 # class attribute (‘static’ in Java)

def __init__(self, color, model, year):

self.color = color # instance attribute

self.model = model

self.year = year

print(Car.wheels)

print(my_car.wheels) # instances may access class attributes

1111

Class attributes vs. instance attributes

Tecniche di Programmazione - 2023/2024

1212

Dynamic nature of attributes

• Instance attributes are normally defined in the __init__ constructor
– All instances will have the same set of attributes

– Their value may be redefined in methods (self.name) or in external code
(my_car.name)

• However, new attributes may be created later
– In any instance method (just assign a value to self.new_name)

– In the external code (just assign a value to my_car.new_name)

– Such attribute is assigned to the specific instance, only

– Works also for class-level attributes (Car.new_name)

– Try to avoid this possibility, as it renders the code much less readable

Tecniche di Programmazione - 2023/2024

1313

Getters and Setters? No, thanks

• In Java, object properties (= instance attributes) are normally defined
with a private visibility, and are not accessible from outside the class
methods

– getXxx() and setXxx(xxx) methods must be defined, for each property xxx

• In Python, attributes are always visible, and no getter/setters are
required

– Just read/write the attribute value

Tecniche di Programmazione - 2023/2024

1414

Visibility conventions

• All class-level attributes and instance-level attributes are public

• By convention, if you consider an attribute to be “private”, prefix it with one or
two “_” (underscore)

• self.counter
– may be accessed (read/written) by anyone

• self._counter
– may still be accessed by anyone, but it’s not polite to do that, and your IDE may send you

a warning. You should consider it a private value

• self.__counter (two underscores)
– it is difficult to access if you are outside a method (Python will mangle its name to

_ClassName__counter), so you will not access it by mistake (unless you really really want)

Tecniche di Programmazione - 2023/2024

1515

Getters and Setters, if/when you want them

• Need to customize what happens
when you read/write a ‘private’
attribute?

• Use the @property annotation

• @property for the getter method

• @name.setter for the setter
method

– If omitted, it will be read-only

• Both methods have the name of the
property

Tecniche di Programmazione - 2023/2024

1616

Special methods

• All objects can customize their behavior in implicit and arithmetic
operators, by defining special methods

• Such methods have all a double-underscore at the beginning & end of
the name

• Hence, the definition of “dunder” (double underscore) methods

• Example: __init__(self, …) # pronounced: dunder-init

– Full list of dunder methods:
https://docs.python.org/3/reference/datamodel.html#special-method-names

Tecniche di Programmazione - 2023/2024

https://docs.python.org/3/reference/datamodel.html#special-method-names

1717

Dunder methods: convert to string

• __str__(self)

– string printable representation (like toString())

• __repr__(self)

– programmer-oriented printable representation (usually, the object creation)

Tecniche di Programmazione - 2023/2024

1818

Dunder methods: comparisons

• __eq__(self, other)

– implements == operator

– Replaces Java’s .equal()

• __lt__(self, other)

– Implements < operator

– Replaces Java’s Comparator, Comparable, compare(), compareTo()

• Other operators (>, <=, !=, >=) are inferred from these methods

• All data structures (dictionaries, sets, …) and methods (sort, max, index,
…) honor these operators

Tecniche di Programmazione - 2023/2024

1919

Dunder methods: operators overloading
• object.__add__(self, other)
• object.__sub__(self, other)
• object.__mul__(self, other)
• object.__matmul__(self, other)
• object.__truediv__(self, other)
• object.__floordiv__(self, other)
• object.__mod__(self, other)
• object.__divmod__(self, other)
• object.__pow__(self, other[, modulo])
• object.__lshift__(self, other)
• object.__rshift__(self, other)
• object.__and__(self, other)
• object.__xor__(self, other)
• object.__or__(self, other)

• object.__neg__(self)
• object.__pos__(self)
• object.__abs__(self)
• object.__invert__(self)

• object.__complex__(self)
• object.__int__(self)
• object.__float__(self)

• object.__radd__(self, other)
• object.__rsub__(self, other)
• object.__rmul__(self, other)
• object.__rmatmul__(self, other)
• object.__rtruediv__(self, other)
• object.__rfloordiv__(self, other)
• object.__rmod__(self, other)
• object.__rdivmod__(self, other)
• object.__rpow__(self, other[, modulo])
• object.__rlshift__(self, other)
• object.__rrshift__(self, other)
• object.__rand__(self, other)
• object.__rxor__(self, other)
• object.__ror__(self, other)

• object.__round__(self[, ndigits])
• object.__trunc__(self)
• object.__floor__(self)
• object.__ceil__(self)

• object.__index__(self)

Tecniche di Programmazione - 2023/2024

2020

Inheritance

• A class may inherit from another class

– class SportsCar(Car):

• All attributes and methods are inherited

• Must call parent class’ __init__ method

– def __init__(self):
Car.__init__() # or: super().__init__()
self.speed = 'high'

Tecniche di Programmazione - 2023/2024

2121

Example

class Car:

wheels = 4

def __init__(self, color, model, year):
self.color = color
self.model = model
self.year = year
self._seats = 0

def age(self):
return 2024 - self.year

class SportsCar(Car):
def __init__(self, color, model, year):

super().__init__(color, model, year)
self.speed = 'high'

my_car = Car('White', 'Panda', 2010)
boss_car = SportsCar('Black', 'Ferrari', 2022)

Tecniche di Programmazione - 2023/2024

2222

Multiple Inheritance

• In Python, it’s possible for a class to inherit from more than one
superclass:

– class SportsCar(Car, ExpensiveGadget):

• All attributes and methods for both superclasses are imported, in the
order of declaration

• Must call both constructors, Car.__init__() and
ExpensiveGadget.__init__()

• There are no ‘interfaces’ in Python, thanks to multiple inheritance

Tecniche di Programmazione - 2023/2024

2323

Polymorphism

• Polymorphism = calling the same method / function / operation, with
different data types

• Java examples:

– With sub-classes: public double area(Polygon p), called with an object of
type Rectangle, which is a sub-class of Polygon, or implements a Polygon
interface

– With overloaded methods: public double area(Polygon p) and public
double area(Conic c)

• Java selects which method to call based on the signature of the methods
and of the inheritance relationships

Tecniche di Programmazione - 2023/2024

2424

Polymorphism in Python

• In Python, method parameters don’t have a type specification: cannot
check for subclasses or signatures

• Python uses a strategy called “Duck Typing”

Tecniche di Programmazione - 2023/2024

If it walks like a duck and it quacks
like a duck, then it must be a duck

2525

Duck typing

• The type or the class of an object is less important than the methods it
defines

• When you use duck typing, you do not check types at all. Instead, you
check for the presence of a given method or attribute

Tecniche di Programmazione - 2023/2024

2626

Example (1)

Tecniche di Programmazione - 2023/2024

def pretty_print(data_provider):
data = data_provider.read_data()
for d in data:

print(d[0])

source_database = DatabaseAccess('localhost', 'root', 'root', 'data')
pretty_print(source_database)

source_file = FileAccess('data.csv')
pretty_print(source_file)

What is the allowed type of
data_provider?

Duck typing says: any class that
has a read_data method.

The function may be called
with totally different classes
as parameters

2727

Example (2)

Tecniche di Programmazione - 2023/2024

class DatabaseAccess():
def __init__(self, server, username, password, database):

self.connection = mysql.connector.connect(server, username, password, database)

def read_data(self):
cursor = self.connection.cursor()
cursor.execute('SELECT * FROM numbers')
result = cursor.fetchall()
return result

class FileAccess():
def __init__(self, file_name):

self.file_name = file_name

def read_data(self):
with open(self.file_name, 'r') as f:

lines = f.readlines()
result = []
for line in lines:

result.append(line.rstrip().split(','))
return result

Two unrelated classes, both
implementing a read_data method,
are interchangeable in pretty_print.

2828

Polymorphism

• Inside a polymorphic function, you may check the classes of the received
instances. Useful to avoid errors before calling methods that might not
exist.

• Do not abuse, it defeats the simplicity of Duck Typing

Tecniche di Programmazione - 2023/2024

2929

Protocols

• Many built-in functions, operators, and keywords are polymorphic

• The set of required methods is called “protocol”

• Examples:

– The len() function accepts any object with a __len__() method

– Any object can be iterated if it has a __iter__() method

– An object can be indexed if it has a __getitem__() method

– An object may be used in the with statement if it implements an __enter__()
and an __exit__() method

Tecniche di Programmazione - 2023/2024

https://mypy.readthedocs.io/en/stable/protocols.html#predefined-protocol-reference

https://mypy.readthedocs.io/en/stable/protocols.html#predefined-protocol-reference

3030

A Well-Defined class

• To correctly interoperate in the Python world, your class must define

– An __init__() method

– A set of self.name instance attributes initialized in the __init__() method

– A __repr__() method for conversion to a (programmer-oriented) string

– An __eq__() method for allowing == and != comparisons

– If required, ordering methods such as __le__() for allowing < > <= >= comparisons

– A __hash__() method to be used by sets and dict keys

– If required, setter/getter methods for attributes

– Plus any other methods specifying its behavior

Tecniche di Programmazione - 2023/2024

B
o

ile
rp

la
te

 c
o

d
e

3131

Dataclasses

• The “boilerplate” code can be automatically generated by the
@dataclass decorator

– Especially useful for classes with basic behavior, such as “data container” classes

Tecniche di Programmazione - 2023/2024

https://docs.python.org/3/library/dataclasses.html
https://realpython.com/python-data-classes/

…plus boilerplate dunder methods

• @dataclass decorator
• List of attributes
• Expected types of attributes,

after semicolon

https://docs.python.org/3/library/dataclasses.html
https://realpython.com/python-data-classes/

3232

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Tecniche di Programmazione - 2023/2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Object Oriented Programming in Python
	Slide 2: Known OOP features (in Java)
	Slide 3: Classes and Objects
	Slide 4: Visual representation
	Slide 5: Classes and Objects
	Slide 6: Classes and Objects
	Slide 7: Classes and Objects
	Slide 8: Classes and Objects
	Slide 9: What is ‘self’?
	Slide 10: Class attributes vs. instance attributes
	Slide 11: Class attributes vs. instance attributes
	Slide 12: Dynamic nature of attributes
	Slide 13: Getters and Setters? No, thanks
	Slide 14: Visibility conventions
	Slide 15: Getters and Setters, if/when you want them
	Slide 16: Special methods
	Slide 17: Dunder methods: convert to string
	Slide 18: Dunder methods: comparisons
	Slide 19: Dunder methods: operators overloading
	Slide 20: Inheritance
	Slide 21: Example
	Slide 22: Multiple Inheritance
	Slide 23: Polymorphism
	Slide 24: Polymorphism in Python
	Slide 25: Duck typing
	Slide 26: Example (1)
	Slide 27: Example (2)
	Slide 28: Polymorphism
	Slide 29: Protocols
	Slide 30: A Well-Defined class
	Slide 31: Dataclasses
	Slide 32: License

