
Recursion
Solving problems by dividing them in smaller,
similar problems

Fulvio Corno

Giuseppe Averta

Carlo Masone

Francesca Pistilli

Tecniche di Programmazione - 2023/2024

22

Summary
• Introduction (definition, call stack, execution context, recursion limit)

– Countdown, factorial, binomial, palindromes
• Iterative vs. recursive algorithms

– Recursive data structures, nested lists
• Memoization/Caching (manually or using @lru_cache)

– Fibonacci
• Sorting and Search algorithms

– Quicksort, Dichotomic search
• Recursion applications

– Recursive data structures, divide et impera, exploration
• Design tips
• Exercises
• Try it at home

Tecniche di Programmazione - 2023/2024

33

INTRODUCTION

Tecniche di Programmazione - 2023/2024

44

Definition

• A recursive definition is one in which the defined term appears in the
definition itself.

Tecniche di Programmazione - 2023/2024

Your ancestors = (your parents) + (your parents’ ancestors)

55

Definition

• In programming, recursion refers to a coding
technique in which a function calls itself.

• A method (or a procedure or a function) is defined
as recursive when:
– Inside its definition, we have a call to the same method

(procedure, function)
– Or, inside its definition, there is a call to another method

that, directly or indirectly, calls the method itself

• An algorithm is said to be recursive when it is based
on recursive methods (procedures, functions)

Tecniche di Programmazione - 2023/2024

66

Definition

Tecniche di Programmazione - 2023/2024

77

Example: Santa Claus deliveries

• It’s Christmas time, and Santa Claus has a list of houses to visit to deliver
presents

• He could loop through the houses, iteratively

Tecniche di Programmazione - 2023/2024

88

Example: Santa Claus deliveries
• But it would probably be more effective to divide the work in chunks,

among different workers

Tecniche di Programmazione - 2023/2024

99

Example: Santa Claus deliveries

houses = [“Eric’s house”, “Kenny’s house”, “Kyle’s house”, “Stan’s house”]

Tecniche di Programmazione - 2023/2024

def deliver_presents_iteratively():
 for house in houses:
 deliver_to(house)

def deliver_presents_recursively(houses):
 if len(houses) == 1:
 house = houses[0]
 deliver_to(house)
 else:
 mid = len(houses) // 2
 first_half = houses[:mid]
 second_half = houses[mid:]
 deliver_presents_recursively(first_half)
 deliver_presents_recursively(second_half)

1010

How far can we go with recursions

Tecniche di Programmazione - 2023/2024

What happens executing this?

• This would go indefinitely, in theory. In practice, we would incur in a RecursionError
• We can check how many iterations we can do using sys.getrecursionlimit()

1111

Example: Countdown

• Let’s try writing down a countdown, recursively

Tecniche di Programmazione - 2023/2024

1212

Example: Factorial

Tecniche di Programmazione - 2023/2024

Factorial definition

Equivalent recursive expression

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1

= 2 * 1 = 2

= 3 * 2 = 6

= 4 * 6 = 24

Growing
call stack

Unwinding
call stack

1313

Example: Factorial

Tecniche di Programmazione - 2023/2024

• We are going to implement this as a method that calls itself.

• From the global context, that first invokes this method, the call stack will grow until
reaching the banal case (1!) and then the call stack will unwind, by passing the
results back until reaching the global context

1414

Example: Binomial

• Compute the Binomial Coefficient (n m) exploiting the recurrence
relations (derived from Tartaglia’s triangle):

Tecniche di Programmazione - 2023/2024

ï
ï
ï

î

ïï
ï

í

ì

£££

=÷÷
ø

ö
çç
è

æ
=÷÷

ø

ö
çç
è

æ

÷÷
ø

ö
çç
è

æ -
+÷÷
ø

ö
çç
è

æ
-
-

=÷÷
ø

ö
çç
è

æ

nmn

n
n
n

m
n

m
n

m
n

0,0

1
0

1
1
1

1515

Maintaining the state

• Each recursive call has its own execution context
• To maintain state, from one recursion level to another, one can:
– Thread the state through each recursive call so that the current state is part of

the current call’s execution context

– Encapsulate the recursive function within a class, using a class attribute to keep
the state information

– Keep the state in global scope

Tecniche di Programmazione - 2023/2024

1616

Maintaining the state

Tecniche di Programmazione - 2023/2024

def sum_recursive(level, N, accumulated_sum):
 if current_number == N:
 return accumulated_sum
 else:
 return sum_recursive(level + 1, N, accumulated_sum + level)

(1, 11, 0) (2, 11, 1) (3, 11, 3)

(1, 11, 0) (11, 11, 55)

1717

Example: Palindrome checking
• Write a recursive program to detect if a word is a palindrome or not
• A palindrome is a word that reads the same backward as it does

forward (e.g., racecar, level, kayak, civic)

Tecniche di Programmazione - 2023/2024

c ivi c

i v i

v

is_palindrome(ivi)

is_palindrome(v)

first letter == last letter?

first letter == last letter?

1818

ITERATION VS.
RECURSION

Tecniche di Programmazione - 2023/2024

1919

Iteration vs. Recursion

• Every recursive program can always be implemented in an iterative
manner

• The best solution, in terms of efficiency and code clarity, depends on the
problem

Tecniche di Programmazione - 2023/2024

2020

Why recursion?

Recursion comes handy in quite a few cases
• Divide et impera
• Systematic exploration/enumeration
• Handling recursive data structures

Tecniche di Programmazione - 2023/2024

2121

Motivation

• Many problems lend themselves, naturally, to a recursive description:
– We define a method to solve sub-problems like the initial one, but smaller
– We define a method to combine the partial solutions into the overall solution of

the original problem

Tecniche di Programmazione - 2023/2024

Divide et
impera

Gaius Julius Caesar

2222

Recursion
• Divide et Impera

• Split a problem P into {Qi} where
Qi are still complex, yet simpler
instances of the same problem.

• Solve {Qi }, then merge the
solutions

• Merge & split must be “simple”
• A.k.a., Divide ’n Conquer

Tecniche di Programmazione - 2023/2024

• Exploration

• Systematic procedure to enumerate
all possible solutions

• Solutions (built stepwise)
– Paths
– Permutations
– Combinations

• Divide et Impera, by “dividing” the
possible solutions

2323

Divide et Impera – Divide and Conquer
def solve (problem):
 sub_problems = divide(problem)
 sub_solutions = []

 for sub_problem in sub_problems:

sub_solutions.append(solve(sub_problem))

solution = combine(sub_solutions)
return solution

solution = solve(problem)

Tecniche di Programmazione - 2023/2024

2424

Divide et Impera – Divide and Conquer
def solve (problem):
 sub_problems = divide(problem)
 sub_solutions = []

 for sub_problem in sub_problems:

sub_solutions.append(solve(sub_problem))

solution = combine(sub_solutions)
return solution

solution = solve(problem)

Tecniche di Programmazione - 2023/2024

“a” sub-problems, each
“b” times smaller than

the initial problem

recursive call

2525

How to stop recursion?

• Recursion must not be infinite
– Any algorithm must always terminate!

• After a sufficient nesting level, sub-problems become so small (and so
easy) to be solved:
– Trivially (ex: sets of just one element, or zero elements)
– Or, with methods different from recursion

Tecniche di Programmazione - 2023/2024

2626

Warnings

• Always remember the “termination condition”
• Ensure that all sub-problems are strictly “smaller” than the initial

problem

Tecniche di Programmazione - 2023/2024

2727

Divide et Impera – Divide and Conquer
def solve (problem):
 if is_trivial(problem):
 solution = solve_trivial(problem)
 return solution
 else:
 sub_problems = divide(problem)
 sub_solutions = []
 for sub_problem in sub_problems:

 sub_solutions.append(solve(sub_problem))
 solution = combine(sub_solutions)
 return solution

Tecniche di Programmazione - 2023/2024

do recursion

check termination

2828

Exploration

• Explore (S) {
– List<Step> steps = PossibleSteps (Problem, S) ;
– for (each p in steps) {

• S.Do (p)
• Explore (S) ;
• S.Undo (p) ;

– }

• }

Tecniche di Programmazione - 2023/2024

2929

Exploration

• Explore (S) {
– List<Step> steps = PossibleSteps (Problem, S) ;
– for (each p in steps) {

• S.Do (p)
• Explore (S) ;
• S.Undo (p) ;

– }

• }

Tecniche di Programmazione - 2023/2024

Backtrack!

The “status” of the
problem

Local variable

“Try” the step

Recursion

3030

Recursive data structures

• A data structure is recursive if it can be defined in terms of a smaller
version of itself.

• Example: list

Tecniche di Programmazione - 2023/2024

def attach_head(element, input_list):
return [element] + input_list

attach_head(3, [“ciao”, 51])

attach_head(“ciao”, [51])

attach_head(51, [])

[3, “ciao”, 51]

3131

Example: nested list

• Assume having a nested list, and having to count the leaf nodes.

Tecniche di Programmazione - 2023/2024

names = ['Adam', ['Bob', ['Chet', 'Cat'], 'Barb', 'Bert'], 'Alex', ['Bea', 'Bill'], 'Ann']

3232

Example: nested list

Tecniche di Programmazione - 2023/2024

Let’s implement this method recursively!

3333

Example: nested list

• The same functionality may also be implemented non-recursively.
– Loop through the elements of a certain level of a list
– Whenever a sub-list is encountered, save the state of the current level (count,

list), and keep counting the elements of that level, until finished (while loop)

Tecniche di Programmazione - 2023/2024

3434

Example: nested list

Tecniche di Programmazione - 2023/2024

Loop through all the elements in the list

Keep track of all the levels not yet completed

Keep track of all the partial result

3535

Example: nested list

Tecniche di Programmazione - 2023/2024

Recursive version Iterative version

3636

IMPROVING EFFICIENCY

Tecniche di Programmazione - 2023/2024

3737

Recursion and efficiency

• How can we improve the runtime efficiency of our recursive method?
– Use appropriate data structures (typically negligible improvements on small

problems)
– Skip recursion threads that do not yield results (can bring massive

improvements)
– Cache intermediate results, if the corresponding sub-problem is encountered

multiple times (improvements depend on the problem, there is a memory cost.)

Tecniche di Programmazione - 2023/2024

3838

Fibonacci sequence

• The Fibonacci sequence is another mathematical construct that has a
nice recursive expression

Tecniche di Programmazione - 2023/2024

0, 1, 1, 2, 3, 5, 8, 13, 21, 34 , 55, …

3939

Fibonacci sequence

Tecniche di Programmazione - 2023/2024

Computing F(5) recursively, implies computing F(2) three times and F(3) two times

4040

Fibonacci sequence

Tecniche di Programmazione - 2023/2024

Cache these results the first time
they are computed, so that later

we can just read them

Let’s implement this!

4141

Memoization

Tecniche di Programmazione - 2023/2024

Memoization: optimization technique used primarily to speed up computer
programs by storing the results of expensive function calls to pure functions and
returning the cached result when the same inputs occur again

4242

Caching using @lru_cache

https://docs.python.org/3/library/functools.html

Tecniche di Programmazione - 2023/2024

The functools package implements caching functionalities, that enable memoization

from functools import lru_cache

@lru_cache(maxsize=None)
def recursion(problem, …):
 # do operations
 return result

• @lru_cache is a decorator that wrap a
function with a memoizing callable that
saves up to the maxsize most recent calls.

• Available since Python 3.2

• It uses a dictionary behind the scenes:

• Key: the call to the function, including
the supplied arguments

• Value: the function’s result

• The function arguments have to
be hashable for the decorator to work.

https://docs.python.org/3/library/functools.html

4343

LRU cache

• The LRU cache should only be used when you want to reuse previously
computed values.

• It doesn’t make sense to cache functions with side-effects, functions that
need to create distinct mutable objects on each call (such as generators
and async functions)

Tecniche di Programmazione - 2023/2024

4444

SORTING AND SEARCHING
WITH RECURSION

Tecniche di Programmazione - 2023/2024

4545

Example: Quicksort

• Quicksort is a sorting algorithm based on the Divide et Impera principle:

1. Choose the pivot item.

2. Partition the list into two sublists:

a. Those items that are less than the pivot item

b. Those items that are greater than the pivot item

3. Quicksort the sublists recursively

Tecniche di Programmazione - 2023/2024

4646

Example: Quicksort

Tecniche di Programmazione - 2023/2024

Sorted
output

4848

Example: Quicksort

• The efficiency of the Quicksort
algorithm depends on the choice
of the pivot used to partition the
list

• For an optimal partition we
would need to know something
about the data (e.g., looping
through all the data, which may
be very expensive)

Tecniche di Programmazione - 2023/2024

4949

Example: dichotomic search

• Problem
– Determine whether an element x is present inside an ordered vector v[N]

• Approach
– Divide the vector in two halves
– Compare the middle element with x
– Reapply the problem over one of the two halves (left or right, depending on the

comparison result)
– The other half may be ignored, since the vector is ordered

Tecniche di Programmazione - 2023/2024

5050

Example: dichotomic search

Tecniche di Programmazione - 2023/2024

1 3 4 6 8 9 11 12v 4x

5151

Example: dichotomic search

Tecniche di Programmazione - 2023/2024

1 3 4 6 8 9 11 12v 4x

y

y<xy³x

5252

Example: dichotomic search

Tecniche di Programmazione - 2023/2024

1 3 4 6 8 9 11 12v 4x

1 3 4 6 8 9 11 12

1 3 4 6

4 6

y

y<xy³x

5454

Example: dichotomic search

Tecniche di Programmazione - 2023/2024

Alternative iterative solution

5555

DESIGN TIPS

Tecniche di Programmazione - 2023/2024

5656

Analyze the problem

• How do I structure a recursion in general?
• What does the level represent?
• What is a partial solution?
• What is a complete solution?

Tecniche di Programmazione - 2023/2024

5757

Generate the possible solutions

• What is the rule to generate all the solutions from level+1, starting from
a partial solution of the current level?

• How can I recognize if a partial solution is also complete? (successful
termination)

• How do I start the recursion? (level 0)?

Tecniche di Programmazione - 2023/2024

5858

Identify valid solutions

• Given a partial solution,
– How can I know if it is valid (and thus I can continue)?
– How can I know if it is not valid (and thus terminate the recursion)?
– Maybe I cannot…

• Given a complete solution,
– How can I know if it is valid?
– How can I know if it is not valid?

• What should I do with the complete solutions that are valid?
– Stop at the first one?
– Compute them all?
– Count them?

Tecniche di Programmazione - 2023/2024

5959

Choose the data structure

• What data structure should I use to store a solution (partial or
complete)?

• What data structure should I use to keep track of the state of the
research (of the recursion)?

Tecniche di Programmazione - 2023/2024

6060

Code Outline
def recursion(…, level):
 // E – instructions that should be always executed (rarely needed)
 do_always(…)

 // A
 if terminal_condition:
 do_something(…)
 return …

 for … //a loop, if needed
 //B
 compute_partial()

 if filtro: //C
 recursion(…, level+1)

 //D
 back_tracking

Tecniche di Programmazione - 2023/2024

6161

Code Outline

Tecniche di Programmazione - 2023/2024

Blocco Frammento di codice

A

B

C

D

E

6262

EXERCISES

Tecniche di Programmazione - 2023/2024

6363

X-Expansion

• We want to devise an algorithm that, given a binary string that includes
characters 0, 1 and X, will compute all the possible combinations implied
by the given string.

• Example: given the string 01X0X, algorithm must compute the following
combinations
– 01000
– 01001
– 01100
– 01101

Tecniche di Programmazione - 2023/2024

6464

X-Expansion

• We may devise a recursive algorithm that explores the complete ‘tree’ of
possible compatible combinations:
– Transforming each X into a 0, and then into a 1
– For each transformation, we recursively seek other X in the string

• The number of final combinations (leaves of the tree) is equal to 2N, if N
is the number of X.

• The tree height is N+1.

Tecniche di Programmazione - 2023/2024

6565

Anagrams

• Given a word, find all possible anagrams of that word
– Find all permutations of the elements in a set
– Permutations are N!

• E.g.: «Dog» à dog, dgo, god, gdo, odg, ogd

Tecniche di Programmazione - 2023/2024

6666

Anagrams: recursion tree

Tecniche di Programmazione - 2023/2024

“”

D,O,G

Letters yet to be
considered

Part of word already
constructed

6767

Anagrams: recursion tree

Tecniche di Programmazione - 2023/2024

“”

D,O,G

“D”

O,G

“O”

D,G

“G”

D,O

Letters yet to be
considered

Part of word already
constructed

6868

Anagrams: recursion tree

Tecniche di Programmazione - 2023/2024

“”

D,O,G

“D”

O,G

“O”

D,G

“G”

D,O

“DO”

G

“DG”

O

“DOG” “DGO”

Letters yet to be
considered

Part of word already
constructed

6969

Anagrams: recursion tree

Tecniche di Programmazione - 2023/2024

“”

D,O,G

“D”

O,G

“O”

D,G

“G”

D,O

“DO”

G

“DG”

O

“DOG” “DGO”

“OD”

G

“OG”

D

“ODG” “OGD”

“GD”

O

“GO”

D

“GDO” “GOD”

Letters yet to be
considered

Part of word already
constructed

7070

Anagrams variants

• Generate only anagrams that are “valid” words
– At the end of recursion, check the dictionary
– During recursion, check whether the current prefix exists in the dictionary

• Handle words with multiple letters: avoid duplicate anagrams
– E.g., “seas” à seas and seas are the same word
– Generate all and, at the end or recursion, check if repeated
– Constrain, during recursion, duplicate letters to always appear in the same order

(e.g, s always before s)
– Use a set to avoid repetitions

Tecniche di Programmazione - 2023/2024

7171

N-Queens

• In chess, a queen can attack horizontally, vertically, and diagonally.
The N-queens problem asks:

• How can N queens be placed on an NxN chessboard so that no two of
them attack each other?

Tecniche di Programmazione - 2023/2024

7272

N-Queens

Tecniche di Programmazione - 2023/2024

• We look for a recursive algorithm, that adds a queen at a time and check if we have
found a solution

7373

Magic Square

Tecniche di Programmazione - 2023/2024

• A square array of numbers, usually positive
integers, is called a magic square if the sums of
the numbers in each row, each column, and both
main diagonals are the same.

• The 'order' of the magic square is the number of
integers along one side (n)

• The numbers in a magic square of order n are
1,2,…, n2 and they are not repeated

• The constant sum is called the 'magic constant'.

7474

EXERCISES FOR HOME

Tecniche di Programmazione - 2023/2024

7575

Knight’s tour

• Consider a NxN chessboard, with the Knight moving according to Chess rules
– The Knight may move in 8 different cells

• We want to find a sequence of moves for the Knight where
– All cells in the chessboard

are visited
– Each cell is touched exactly once

• The starting point is arbitrary

Tecniche di Programmazione - 2023/2024

7676

A simple game

Tecniche di Programmazione - 2023/2024

8 2 5 5 6 7 3 9

1 2 4 1 9 2 3 1

2 2 5 2 4 7 9 7

8 2 5 6 6 6 3 9

1 2 4 1 9 2 3 1

2 7 1 1 4 7 8 9

2 3 5 3 1 8 9 9

8 2 3 1 6 7 3 9

You beat the monster, if the sum of the
scores of your squares is exactly 50

7777

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Tecniche di Programmazione - 2023/2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

